

CYP2D6: imipramine

2391-2393

AUC = area under the concentration-time curve, Cl_{or} = oral clearance, C_{ss} = plasma concentration in steady state, CTCAE = common terminology criteria for adverse events, DI = desipramine, HI = 2-hydroxy imipramine, I = imipramine, IM = intermediate metaboliser (gene dose 0.25-1) (decreased CYP2D6 enzyme activity), NM = normal metaboliser (gene dose 1.25-2.5) (normal CYP2D6 enzyme activity), NS = non-significant, PM = poor metaboliser (gene dose 0) (absent CYP2D6 enzyme activity), S = significant, SmPC = Summary of Product Characteristics, $t_{1/2}$ = half-life, TCA = tricyclic antidepressant, UM = ultra-rapid metaboliser (gene dose \ge 2.75) (increased CYP2D6 enzyme activity)

Disclaimer: The Pharmacogenetics Working Group of the KNMP formulates the optimal recommendations for each phenotype group based on the available evidence. If this optimal recommendation cannot be followed due to practical restrictions, e.g. therapeutic drug monitoring or a lower dose is not available, the health care professional should consider the next best option.

Brief summary and justification of choices:

Imipramine and the active metabolite desipramine are primarily converted by CYP2D6 to inactive hydroxy metabolites.

Genetic variants in CYP2D6 can result in a decreased CYP2D6 enzyme activity (intermediate metabolisers (IM)), an absent CYP2D6 enzyme activity (poor metabolisers (PM)) or an increased CYP2D6 enzyme activity (ultra-rapid metabolisers (UM)).

Kinetic studies showed differences in imipramine + desipramine exposure for patients with CYP2D6 gene variants (Schenk 2008, Koyama 1994, Sindrup 1990 and Brosen 1986). A case report suggests an increased risk for toxic plasma concentrations and adverse events in PM (Balant-Gorgia 1989). A study showed a stronger increase in the electrical single pain detection threshold for IM compared to NM, but no difference in 10 other experimental pain thresholds (Schliessbach 2018). Vos 2023 did not find CYP2D6 and CYP2C19 genotype-guided therapy in 3 patients to decrease the time to therapeutic plasma concentration. However, in this study, the mean plasma concentration of imipramine + desipramine in NM on normal dose (175 mg/day) was subtherapeutic, suggesting that the chosen normal dose and the genotype-guided doses calculated from it were actually too low. Because imipramine has a narrow therapeutic range, changes in exposure are likely to have therapeutic consequences. For these reasons, the KNMP Pharmacogenetics Working Group decides that a gene-drug interaction is present and that dose adjustments are required for PM, IM and UM (yes/yes-interactions).

Justification of recommendations per CYP2D6 phenotype

Dose adjustments have been calculated on the basis of the AUC or Css for impramine + desipramine.

- PM: The weighted mean of the calculated dose adjustment based on a total of 16 PM from 3 studies (Schenk 2008, Koyama 1994, and Brosen 1986) is a dose reduction to 31% of the normal dose (21%-37%; median 24%). This was rounded off to 30% to be more achievable in clinical practice. The plasma concentration or efficacy and adverse events should be monitored in order to set the maintenance dose.
- IM: The weighted mean of the calculated dose adjustment based on a total of 71 IM from 2 studies (Vos 2023 and Schenk 2008) is a dose reduction to 67% of the normal dose (41%-68%; median 55%). This was rounded off to 70% to be more achievable in clinical practice. The plasma concentration or efficacy and adverse events should be monitored in order to set the maintenance dose.
- UM: The calculated dose adjustment based on one study with 11 UM (Schenk 2008) is a dose increase to 170% of the normal dose. The plasma concentration or efficacy and adverse events should be monitored in order to set the maintenance dose.

An alternative can be selected as a precaution due to the absence of knowledge about the effects of high concentrations of the possible cardiotoxic hydroxy metabolites.

Note: The kinetics of imipramine and the metabolite desipramine are non-linear at a therapeutic dose, due to saturation of the metabolism via CYP2D6. Therefore, dose adjustments that are calculated based on linearity of the kinetics can be too high.

You can find an overview of the observed kinetic and clinical consequences per phenotype in the background information text of the gene-drug interactions in the KNMP Kennisbank. You might also have access to this background information text via your pharmacy or physician electronic decision support system.

Recommendation concerning pre-emptive genotyping, including justification of choices:

The KNMP Pharmacogenetics Working Group considers genotyping before starting imipramine to be potentially beneficial for the prevention of side effects. Genotyping can be considered on an individual patient basis. If, however, the genotype is available, the KNMP Pharmacogenetics Working Group recommends adhering to the gene-drug guideline.

The clinical implication of the gene-drug interaction scores 0 out of the maximum of 10 points (with pre-emptive genotyping considered to be potentially beneficial for scores ranging from 0 to 2 points) (see also the clinical implication score tables at the end of this risk analysis):

No severe clinical effects were observed in users of imipramine with a variant phenotype. The maximum severity code was C corresponding to CTCAE grade 2. This results in a score of 0 out of the maximum of 2 points for the first criterion of the clinical implication score, the clinical effect associated with the gene-drug interaction (only points for CTCAE grade \geq 3).

The lack of a severe clinical effect also results in a score of 0 of the maximum of 3 points for the second and third criterion of the clinical implication score: the level of evidence supporting an associated clinical effect grade \geq 3 and the number needed to genotype (NNG) in the Dutch population to prevent one clinical effect code \geq D (grade \geq 3). The American Summary of Product Characteristics (SmPC) of imipramine mentions the CYP2D6 PM phenotype, but the Dutch SmPC (SmPC Imipramine HCI CF 31-8-2021) does not. This results in 0 out of the maximum of 2 points for the fourth and last criterion of the clinical implication score, the pharmacogenetics information in the SmPC (only points for at least one genotype/phenotype mentioned in the (Dutch) SmPC).

Source	Code	Effect	Comments
Source ref. 1 Vos CF et al. Effectiveness of geno- type-specific tricyclic antidepressant dosing in patients with major depressive disorder: a randomized clinical trial. JAMA Netw Open 2023;6:e2312443. PMID: 37155164.	4	Effect 3 unipolar nonpsychotic major depressive disorder patients received at least one dose of CYP2D6 and CYP2C19 genotype-guided imipramine treatment and 3 patients received at least one dose of not genotype- guided imipramine treatment. Plasma concentrations and genotypes were reported for 2 patients in the genotype- guided arm and 3 patients in the not genotype-guided arm. The dosing recommendation in the not genotype guided treatment arm was 175 mg/day. The dosing recommendations in the genotype-guided treatment arm were according to the 2022 KNMP Pharmacogenetics Working Group guidelines except for patients having both the CYP2C19 PM phenotype and a variant CYP2D6 phenotype receiving nortriptyline instead of imipramine with both dose adaptations and being randomised to the nortriptyline arm of the study: 175 mg/day (100%) for CYP2D6 NM, 125 mg/day (70%) for CYP2D6 IM, 50 mg/ day (30%) for CYP2D6 PM, 300 mg/day (170%) for CYP2D6 UM, 175 mg/day (100%) for CYP2C19 NM, IM and UM, and 125 mg/day (70%) for CYP2C19 NM, IM and UM, and 125 mg/day (70%) for CYP2C19 NM, IM and UM, and 125 mg/day (70%) for CYP2C19 NM, JM and UM, and 125 mg/day (70%) for CYP2C19 NM, 96.4% of patients initiated treatment with the recommended dose and all patients attained the recommended dose within the first week of treatment. Steady state plasma concentrations were determined (i.e., after 7 days without dose adjustment). In cases of subtherapeutic or supra- therapeutic plasma concentrations, dose adjustments were made based on linear kinetics until a therapeutic drug concentration was reached. Follow-up was for 7 weeks. In both treatment arms, therapeutic drug monito- ring was weekly, which is more often than usual (in clini- cal practice, it takes several weeks until plasma concen- trations are measured).	Comments Authors' conclusion: 'In this randomized clinical trial, pharma- cogenetics-informed treatment resulted in faster attainment of therapeutic TCA concentrations. No effect was observed for imipramine.'

The table below follows the KNMP definitions for NM, PM, IM and UM. The definitions of NM, PM, IM and UM used in the table below may therefore differ from the definitions used by the authors in the article.

ref. 1. continuation		(e.g. CYP2DA	inhihi	tors) and psychotropic co	medication	
		other than a b	enzod	liazepine in a dose equiva	alent up to 4	
		mg lorazepan	n per d	lay were excluded.		
		Based on the	assun	nption that 50% of the not	genotpe-	
		guided group	would	reach a therapeutic plasm	na concen-	
		tration within	4 weeł	ks and that 50% of the ge	notype-	
		guided group	would	reach a therapeutic conc	entration	
		within 2 week	s, a po	ower of 80% was calculate	ed to require	
		a sample size	e of 44	patients per treatment an	m. Based on	
		the mean red	uction	of adverse event scores i		
		sample size c	of 63 n	atients per treatment arm	require a	
		30mpic 3ize c	n 00 pi			
		Genotyping C	YP2D	6:		
		Genotype-g	uided a	arm Not genotype-g	guided arm	
		- 1x NM (CY	P2C19	9 PM) - 2x NM (CYP2	C19 NM)	
	Geno-	- 1x IM (CYF	P2C19	NM) - 1x IM (CYP20	C19 NM)	
	type-gui- ded ver-	Results:				
	sus not	Results for g	genoty	pe-guided treatment com	pared to	
	genotype	not genotype	e-guide	ed treatment:		
	-yulueu treatment	time to the sec		NO		
	: AA		apeu-	NS		
		centration	011-			
		plasma	NM	x 1.18 (NS)	77.0	
		concentra-			ng/ml	
		tion imi-	IM	x 0.35 (NS)	186.0	
		pramine +		The plasma concentra-	ng/ml	
		desipra-		tion was therapeutic		
		mine		(150-300 ng/ ml) on		
				the not genotype-gui-		
				rapeutic on the geno-		
				type-quided dose		
			Note	: On the not-genotype gui	ded dose,	
			the m	nean plasma concentratio	n was sub-	
			thera	peutic (<150 ng/ml) in NN	/I and the-	
			rapeu	utic in IM (150-300 ng/ ml). This indi-	
			cates	s that genotype-guided tre	eatment,	
			1.e. a	djusting the dose such the	at the plas-	
			MM i	s predicted to decrease the	lo inal in	
			tage	of IM having a therapeuti	c plasma	
			conc	entration on the recomme	ended	
			dose			
		Results com	pared	to NM (significance not d	etermined):	plasma concentra-
				IIVI	for	desipramine versus
					NM	NM:
		plasma cono	centrat	ion of x 2.42 (NS)	77.0	IM: 242%
		imipramine -	+ desip	pramine	ng/ml	
		at a dose of	175 m	g/day	04.0	
		plasma cono	centrat	x 0.73 (NS)	91.0	
		at the genot	vpe-an	lided	ng/m	
		dose				
					·	

ref. 1, continuation		Note: Genotyping was	for *1 t	hrough *11, *15, *1 [·]	7, *29,			
		*35, *41, and gene dup	licatior	 These are the mo 	st			
		important gene variants	s in this	S Dutch population.				
ref. 2 Schliessbach J et al. Effect of single-dose imipramine on chronic low-back and experi- mental pain. A rando- mized controlled trial. PLoS One 2018;13:e0195776. PubMed PMID: 29742109.	3	important gene variants in this Dutch population. In a cross-over study, 46 patients with chronic low-back pain were subjected to experimental pain after a single dose of either imipramine 75 mg or tolteridine 1 mg (active placebo). Tolteridine lacks anti-nociceptive effects, but mimics some of the sedative side effects of imipramine such as blurred vision, drowsiness and sleepiness. The patients had chronic low-back pain of at least 3 months duration and a pain intensity at rest \geq 3 on a 10-point rating scale. Experimental pain tests were performed before and one and two hours after drug administration. All tests were performed at the more painful body side. Pressure pain detection and tolerance thresholds for electrical single pain and repeated pain (with 5 stimuli at 2 Hz inducing tempo- ral summation) were measured in the innervation area of the sural nerve. After hand immersion in ice water, the						
		the sural nerve. After h time until cold pain reac point rating scale was r tolerance thresholds ar were measured at the l was limited to a maxim threshold was dichoton of 0°C (cold pain detec with a threshold above measurements were re Co-medication with ant vulsants and intake of o ding drug or alcohol ab medication had to be si experiment. Only aceta allowed as rescue med experiments. Co-medic inducers was not exclu Genotyping: - 26x NM - 20x IM						
		Results:						
				IM	value for NM			
		electrical single pain	1 hr	x 1.17	1.03			
		aetection threshold	2 hr	X 1.16	0.99			
	IM: AA#			S for both time				
		electrical repeated	1 hr	trend for an in	0.07			
		pain detection three-	2 hr	crease for both	0.95			
		hold	2111	time points com- bined (NS, p = 0.079)	0.00			
		pressure pain	1 hr	trend for an in-	0.99			
		detection threshold	2 hr	crease for both time points com- bined (NS, p = 0.054)	0.96			
		pressure pain tole-	1 hr	NS for both time	0.98			

ref 2 continuation		rance threshold	2 hr	noints combined	1.04	
		time until cold pain	2111 1 hr	NS for both time	1.04	
					1.00	
		reaches intensity 7	2 nr	points combined	1.03	
		on a 10-point scale	4 1 .	NO	0.77	
		neat pain detection	1 nr	NS	0.77	
		threshold (leg)	2 hr	NS	1.95	
		heat pain detection	1 hr	NS	0.85	
		threshold (arm)	2 hr	NS	0.94	
		heat pain tolerance	1 hr	NS	0.77	
		threshold (leg)	2 hr	NS	1.04	
		heat pain tolerance	1 hr	NS	1.35	
		threshold (arm)	2 hr	NS	1.08	
		cold pain detection	1 hr	NS	1.08	
		threshold (leg) at	2 hr	NS	1.06	
		cold pain detection	1 hr	NS	0.00	
		threshold (arm) at	1 0 h r	NO NO	0.90	
			2 nr	112	1.53	
		0.0				
		NB: Genotyping was fo	or *3-*6	, *8, *10, *41 and g	ene	
		multiplication. These a	re the r	nost important gene	e vari-	
		ants in this Swiss popu	lation.	*3, *6 and *8 were	not	
		detected in this patient	group.	3 PM and 1 UM w	ere	
		excluded from the stud	у.			
ref. 3	4	The gene dose was de	termine	ed in a retrospective	e study	Authors' conclusion:
Schenk PW et al.		of 181 patients (10x 0;	15x 0.	5; 55x 1; 28x 1.5; 6	2x 2; 11x	'Faster dose adjust-
Association of graded		>2) on imipramine 40-9	900 mg	/day. Relevant co-r	nedica-	ment may lead to a
allele-specific chan-		tion was excluded. The	dose	of imipramine was l	based on	reduced number of
ges in CYP2D6 func-		a target value of 200-3	00 µg/r	nL for Css I+DI.		adverse drug reac-
tion with imipramine						tions and faster
dose requirement in a		Css I+DI / dose varies	signific	antly per gene dos	e:	recovery and, there-
large group of depres-	PM: A	0: 2.84x10 ⁻³ /L				fore, shortened hos-
sed patients.	IM: A	0.5: 1.91x10 ⁻³ /L				pitalization. Based
Mol Psychiatry		1: 1.43x10 ⁻³ /L				on our present data
2008;13:597-605.		1.5: 1.21x10 ⁻³ /L				we would thus re-
		2: 0.96x10 ⁻³ /L				commend our proto-
	UM: A	>2: 0.61x10 ⁻³ /L				col for CYP2D6
						genotyping before
		The calculated imipram	nine do	se for a Css I+DI of	f 250	the start of IMI phar-
		ug/mL differs significar	tly per	gene dose:		macotherapy.'
		0: 131 mg/day	51	0		
		0.5: 155 mg/day				Css ^a I + DI versus
		1: 217 mg/dav				NM (gene doses 1.5
		1.5: 245 mg/dav				and 2):
		2: 326 mg/day				PM (gene dose 0):
		>2: 509 mg/dav				274%
						IM (0.5 and 1):
		NOTE: The actual mea	in dose	e for gene dose >2 v	was 309	148%
		mg/day. Therefore, the	re is lit	tle experience with	the use	UM (>2): 59%
		of very high doses for l	JM.			
ref. 4	3	A total of eleven (11) h	ealthy	volunteers (7x NM	4x PM	
Kovama E et al	–	(phenotyping with met	oprolol)	all CYP2C19 NM	recei-	
Metabolic disposition		ved a single dose of in	nipram	ine 25 ma.		
of imipramine in orien-						
tal subjects: relation		PM versus NM·				
to metoprolol alpha-	ΡΜ· Δ	- AUC I+DI increased f	rom 30	7 to 1383 na/ml na	er hour	NM.
hydroxylation and S-		(S by 323%)	. 5111 52			PM: 423%
menhenytoin <i>A</i> '-hydro-		(0 0 y 0 2 0 /0).				1 WI. 72070
vulation phenotypes			מעור			
I Pharmacol Evo Thor			50011			
1001.071.060 7						
1994,211.000-1.						

ref. 5	4	19 diabetics with neuropathy, 1x "rapid NM" (MR of spar-	
Sindrup SH et al.		teine 0.14), 15x NM (MR of sparteine 0.18-3.5), 1x "slow NM" (MR of sparteine 6.4), 2x PM (MR of sparteine > 20)	
imipramine in low and		no relevant co-medication:	
medium plasma level			
ranges.	D1	Required dose for Css I+DI 300-500 nM:	
Ther Drug Monit	PM: A	- PM: 20-25 mg/day for therapeutic concentration	
1990,12.445-9.	IM· A	- slow NM: 50 mg/day	
		liow run. co mg, day	
		NOTE: genotype unknown	
ref. 6	2	8 patients, 4 received imipramine. 3 of them received a	
Balant-Gorgia AE et		Levomepromazine), therefore not described here	
High blood concen-			
trations of imipramine		- patient 1: received imipramine 150 mg/day, no impro-	
or clomipramine and		vement of depression, did experience side effects	
therapeutic failure: a		and orthostatic hypotension. The patient was found to	
case report study	1 101. C	be a PW. CSS impramine = 125 ng/mL and CSS DI 1730 ng/mL Css $I \pm DI = 1855$ ng/mL	
data.		The side effects disappeared following the re-start of	
Ther Drug Monit		the therapy with impramine 25 mg/day. Css I+DI =	
1989;11:415-20.		160 ng/mL.	
		NOTE: genotype unknown	
ref. 7	3	18 healthy volunteers, 6x "rapid NM" (MR of sparteine	
Brosen K et al.		0.22-0.33), 6x "slow NM" (MR of sparteine 0.72-0.99), 6x	
Imipramine demethy-		PM (MR of sparteine 62-179), no co-medication, a single	
lation and hydroxyla-		dose of 100 mg imipramine;	
sparteine oxidation		- PM: decrease in Clorimipramine versus "rapid NM"	
phenotype.	PM: A	from 2.55 to 1.35 L/min (S by 47%), increase in $t_2^{1/2}$	
Clin Pharmacol Ther		from 16 to 23 hours. Increase in AUC ratio DI/I from	
1986;40:543-9.		0.89 to 6.8 (S by 664%), no OH metabolite detecta-	
		DIE. "clow NM": decrease in Cl., iminramine versus "ranid	
	IM: AA	NM" from 2.55 to 2.28 L/min (NS by 11%), $t_2^{1/2}$	
		unchanged. Increase in AUC ratio DI/I from 0.89 to	
		1.6 (NS by 80%), decrease in AUC ration HI/I from	
		0.40 to 0.23 (S by 43%).	
		NOTE: PM homozygote recessive, genotype of other	
		volunteers unknown	
ref. 8	4	35 patients, 33x NM, 2x PM, no relevant co-medication,	Authors' conclusion:
Brosen K et al.		with imipramine dose 100 mg/day;	We therefore con-
trations of iminramine		PM: increase in Cos impramine versus NM from 169	teine/debrisoquine
and its metabolites in		to 378.5 nM (NS by 124%), increase in C_{ss}	polymorphism is an
relation to the spar-		desipramine from 212 to 1434.5 nM (NS by 578%).	important determi-
teine/ debrisoquine		Sum concentration I+DI was elevated by 376%. C_{ss}	nant of therapeutic
polymorphism.		ratio HI/I and HDI/DI both decreased, from 0.25 to	outcome and toxicity
1986-30-679-84		78% and 86% respectively)	with standard doses
			of imipramine'
	(2)	With dose based on Css I+DI = 700-900 nM:	
	PM: A	- PM: 1x 50 mg/day, other patient did not want to go	USS I+DI versus NM:
		- NM: 50-400 mg/dav	F IVI. 47070
rof 9	0	NOTE: genotype unknown	
SmPC Tofranil-PM	0	Drugs metabolized by P450 2D6	

(imipramine) 28-07-		The biochemical activity of the drug metabolizing isozyme	
14, USA.		cytochrome P450 2D6 (debrisoquin hydroxylase) is redu-	
		ced in a subset of the Caucasian population (about 7% to	
ref. 9, continuation		10% of Caucasians are so-called "poor metabolizers");	
		reliable estimates of the prevalence of reduced P450 2D6	
		isozyme activity among Asian, African, and other popula-	
		tions are not yet available. Poor metabolizers have higher	
	PM: A	than expected plasma concentrations of tricyclic antide-	
		pressants (TCAs) when given usual doses. Depending on	
		the fraction of drug metabolized by P450 2D6, the increa-	
		se in plasma concentration may be small, or quite large	
		(8-fold increase in plasma AUC of the TCA).	

^a: corrected for dose.

NOTE: Phenotyping usually does not distinguish between IM, NM and UM. Therefore, in these studies, NM is usually equal to IM+NM+UM.

Risk group IM with CYP2D6 inhibitor, UM with CYP2D6 inducer

Comments:

- Existing guideline:

Hicks JK et al. Clinical pharmacogenetics implementation consortium guideline (CPIC) for CYP2D6 and CYP2C19 genotypes and dosing of tricyclic antidepressants: 2016 update. Clin Pharmacol Ther 2017;102:37-44, PubMed PMID: 27997040 and October 2019 update on the CPIC site (modifications to CPIC's prior system of genotype-phenotype translation, including downgrading the value assigned to the CYP2D6*10 allele for activity score calculation from 0.5 to 0.25 and changing the phenotype assignment for an activity score of 1 from normal metaboliser to intermediate metaboliser).

CPIC uses the same definition for NM, IM and PM as we do. However, CPIC uses a different definition for UM (gene dose \geq 2.5 instead of \geq 2.75), because CPIC did not decide to include gene dose 2.5 in NM until most laboratories can determine which allele has been duplicated and therefore can distinguish between e.g. *1x2/*41 (gene dose 2.5) and *1/*41x2 (gene dose 2). The summary below uses the KNMP definition for NM, PM, IM and UM.

CPIC uses amitriptyline as a representative TCA for this guideline. CPIC states that the results of the amitriptyline studies may apply to other TCAs because these drugs have comparable pharmacokinetic properties (the reviews Rudorfer MV et al. Metabolism of tricyclic antidepressants. Cell Mol Neurobiol 1999;19:373-409 and Stingl JC et al. Genetic variability of drug-metabolizing enzymes: the dual impact on psychiatric therapy and regulation of brain function. Mol Psychiatry 2013;18:273-87). In addition, extrapolated dose adjustments based on metaboliser status are similar across the tricyclic class (Stingl 2013). CPIC also uses amitriptyline as a representative for imipramine, although literature suggests that the clearance of TCAs is mostly a linear process, but saturation of the hydroxylation pathway may occur at higher plasma concentrations for certain TCAs, including imipramine and desipramine (Rudorfer 1999 and Cooke RG et al. The nonlinear kinetics of desipramine and 2-hydroxydesipramine in plasma. Clin Pharmacol Ther 1984;36:343-9).

For amitriptyline, CPIC states that the recommended starting dose does not need dose adjustment for NM. In addition, CPIC states that a 25% reduction of the recommended dose may be considered for patients with a CYP2D6 gene dose of 0.5. As a reference for this percentage reduction they mention the 2011 publication of our dosing recommendations in Clinical Pharmacology and Therapeutics. However, this dosing recommendation is primarily based on patients with gene dose 1. In addition, we changed the percentage reduction in 2011 from 25% to 40%, based on the switch from using the sum of the plasma concentrations of amitriptyline and nortriptyline to using the plasma concentration of nortriptyline for dose calculations. Because patients with a CYP2D6 activity score of 1.0 are inconsistently categorised as intermediate or normal metabolisers in the literature, making these studies difficult to evaluate, CPIC classified the strength of the recommendation for gene dose 0.5 as moderate (i.e. there is a close or uncertain balance as to whether the evidence is high quality and the desirable clearly outweigh the undesirable effects). After the October 2019 update, CPIC states that a 25% reduction of the recommended dose may also be considered for patients with a CYP2D6 gene dose of 1.

CPIC states that CYP2D6 ultra-rapid metabolisers + gene dose 2.5 have a higher probability of failing amitriptyline pharmacotherapy due to subtherapeutic plasma concentrations, and alternate agents are preferred. CPIC states that, if amitriptyline is warranted, there are insufficient data in the literature to calculate a starting dose for a patient with CYP2D6 ultra-rapid metaboliser or gene dose 2.5 status, and therapeutic drug monitoring is strongly recommended.

Based on a nortriptyline study, CPIC indicates that adverse effects are more likely in CYP2D6 poor metabolisers due to elevated tricyclic plasma concentrations; therefore, alternate agents are preferred. If a tricyclic is

warranted, CPIC recommends to consider a 50% reduction of the usual dose, and strongly recommends therapeutic drug monitoring.

Because the TCAs have comparable pharmacokinetic properties, CPIC states that it may be reasonable to extrapolate the amitriptyline guideline to other TCAs, including imipramine, with the acknowledgment that there are fewer data supporting dose adjustments for these drugs than for amitriptyline.

Thus, the therapeutic recommendations for imipramine are identical to the therapeutic recommendations for amitriptyline with only the classification of the recommendations adapted to the fewer supporting clinical and pharmacokinetic data:

Dosing recom on CYP2C19	nmendations for imipramine for conditions requiring higher doses such as de phenotype ^{a,b}	epression based
Phenotype	Therapeutic recommendation	Classification of recommendation
UM + gene dose 2.5	Avoid imipramine use due to potential lack of efficacy. Consider alterna- tive drug not metabolised by CYP2D6. If imipramine is warranted, consider titrating to a higher target dose (compared to normal metabolisers). ^c Utilise therapeutic drug monitoring to guide dose adjustments.	Optional ^e
NM	Initiate therapy with recommended starting dose. ^d	Strong ^f
gene dose 1	Consider a 25% reduction of recommended starting dose. ^d Utilise therapeutic drug monitoring to guide dose adjustments. ^c	Optional ^e
gene dose 0.5	Consider a 25% reduction of recommended starting dose. ^d Utilise therapeutic drug monitoring to guide dose adjustments. ^c	Optional ^e
РМ	Avoid imipramine use due to potential for side effects. Consider alternative drug not metabolised by CYP2D6. If imipramine is warranted, consider a 50% reduction of recommended starting dose. ^d Utilise therapeutic drug monitoring to guide dose adjust- ments. ^c	Optional ^e

^a Dosing recommendations only apply to higher initial doses of TCAs for treatment of conditions such as depression. For conditions at which lower initial doses are used, such as neuropathic pain, CPIC recommends no dose modifications for PM or gene dose 0.5, because it is less likely that PM or gene dose 0.5 will experience adverse effects due to supratherapeutic plasma concentrations of the TCA. However, CPIC indicates that these patients should be monitored closely for side effects. In addition, if larger doses of TCA are warranted, CPIC recommends following the gene-based dosing guidelines in the table above. For UM+gene dose 2.5, CPIC recommends considering an alternative agent. Based on predicted and observed pharmacokinetic data in those with depression, CYP2D6 UM+gene dose 2.5 may be at an increased risk of failing TCA therapy for neuropathic pain due to lower than expected drug concentrations (Dworkin RH et al. Pharmacologic management of neuropathic pain: evidence-based recommendations. Pain 2007;13: 237-51).

^b Because the tricyclics have comparable pharmacokinetic properties, it may be reasonable to apply these amitriptyline recommendations to other tricyclics, including imipramine, with the acknowledgment that there are fewer data supporting dose adjustments for these drugs than for amitriptyline.

^c Titrate dose to observed clinical response with symptom improvement and minimal (if any) side effects.

^d Patients may receive an initial low dose of imipramine, which is then increased over several days to the recommended steady-state dose. The starting dose in this guideline refers to the recommended steady-state dose.

^e Optional indicates that the desirable effects are closely balanced with undesirable effects, or the evidence is weak or based on extrapolations. There is room for differences in opinion as to the need for the recommended course of action.

^f Strong indicates that "The evidence is high quality and the desirable effects clearly outweigh the undesirable effects." As evidence linking CYP2D6 genotype with imipramine phenotype, CPIC mentions Schenk 2008, Bijl 2008, Chen 1996, Madsen 1996, Madsen 1995, Koyama 1994, Brosen 1991, Sindrup 1990, Balant-Gorgia 1989, and two times Brosen 1986. These studies, except for Bijl 2008, Chen 1996, Madsen 1996, Madsen 1995 and Brosen 1991 are included in our risk analysis. Bijl 2008 was not included in our risk analysis because only 29 of the 1198 patients in the study (among whom 807 TCA users) used imipramine, and results were not reported separately for imipramine. Chen 1996 was not included because only 5 of the 18 patients with adverse events on antidepressants (had) used imipramine, and results were not reported separately for imipramine. Madsen 1996 and Madsen 1995 were not included, because only metabolites in urine were determined, no plasma concentrations. Brosen 1991 was not included because it was an in vitro study. In addition to the studies considered by CPIC, our risk analysis includes the recent studies of Schliessbach 2018 and Vos 2023. CPIC indicates that the studies provide a high level of evidence for a decreased imipramine metabolism in PM compared to gene dose 1-2 (based on 7 studies including Madsen 1995 and Madsen 1996 for PM and on 1 study for UM+gene dose 2.5), for a correlation between the number/function of CYP2D6 variant alleles and metabolism of imipramine (Schenk 2018), and for a correlation of sparteine metabolism with imipramine metabolism (Madsen 1995). In addition, CPIC indicates that these studies provide a high level of evidence for the requirement of a lower dose of imipramine by PM as compared to gene dose 1-2 (3 studies, including Bijl 2008), for the requirement of a higher dose of imipramine by UM+gene dose 2.5 as compared to gene dose 1-2 (Schenk 2008), and for an association of CYP2D6 genotype with variations in dose requirement for impramine (Schenk 2008). CPIC indicates that these studies provide a moderate level of evidence for an

increased risk for side effects in carriers of no function alleles compared to carriers of other alleles (3 studies, including Bijl 2008 and Chen 1996).

CPIC also provides therapeutic recommendations based on both CYP2D6 and CYP2C19 genotypes. For CYP2D6 UM+gene dose 2.5 and for CYP2D6 PM the therapeutic recommendations for the different CYP-2C19 phenotypes are similar, reflecting the stronger influence of the CYP2D6 phenotype compared to the CYP2C19 phenotype. CPIC indicates that further studies are needed to develop moderate or strong dosing recommendations for TCAs when considering combined CYP2D6/CYP2C19 phenotypes. At the moment, insufficient data are available. Based on Steimer 2005, CPIC mentions that patients carrying at least one CYP2D6 no function allele and two CYP2C19 normal function alleles had an increased risk of experiencing side effects when administered amitriptyline. This would argue for a therapeutic recommendation also for patients with CYP2D6 gene dose 1, which is the predominant phenotype in this patient group. On 18-12-2023, there was not a more recent version of the recommendations present on the PharmGKB- and on the CPIC-site.

Date of literature search: 14 December 2023.

	Phenotype	Code	Gene-drug interaction	Action	Date
KNMP Pharmacogenetic	PM	4 C	yes	yes	8 February 2024
Working Group decision	IM	4 A	yes	yes	
	UM	4 A	yes	yes	

Mechanism:

Imipramine and the active metabolite desipramine are primarily converted by CYP2D6 to inactive hydroxy metabolites. Imipramine is mainly converted by CYP2C19 to desipramine. The Z-hydroxymetabolites of amitriptyline and nortriptyline are known to be cardiotoxic. It cannot be excluded that the Z-hydroxymetabolites of imipramine and desipramine are also cardiotoxic.

The therapeutic effectiveness and side effects of imipramine are associated with the plasma concentration of the sum of imipramine and desipramine. The therapeutic range is 150-300 ng/ml and values above 500 ng/ml are considered to be toxic.

Clinical Implication Score:

Table 1: Definitions of the available Clinical Implication Scores

Potentially	PGx testing for this gene-drug pair is potentially beneficial. Genotyping can be	0-2 +					
beneficial	considered on an individual patient basis. If, however, the genotype is available,						
	the DPWG recommends adhering to the gene-drug guideline						
Beneficial	PGx testing for this gene-drug pair is beneficial. It is advised to consider genotyping the patient before (or directly after) drug therapy has been initiated to guide drug and dose selection	3-5 +					
Essential	PGx testing for this gene-drug pair is essential for drug safety or efficacy. Genotyping must be performed before drug therapy has been initiated to guide drug and dose selection	6-10 +					

Table 2: Criteria on which the attribution of Clinical Implication Score is based

Clinical Implication Score Criteria	Possible Score	Given Score
Clinical effect associated with gene-drug interaction (drug- or diminished efficacy-induced)		
CTCAE Grade 3 or 4 (clinical effect score D or E)	+	
CTCAE Grade 5 (clinical effect score F)	++	
Level of evidence supporting the associated clinical effect grade ≥ 3		
• One study with level of evidence score ≥ 3	+	
• Two studies with level of evidence score ≥ 3	++	
Three or more studies with level of evidence score ≥ 3	+++	
Number needed to genotype (NNG) in the Dutch population to prevent one clinical effect grade		
≥ 3		
• 100 < NNG ≤ 1000	+	
• $10 < NNG \le 100$	++	
• NNG ≤ 10	+++	
PGx information in the Summary of Product Characteristics (SmPC)		
At least one genotype/phenotype mentioned	+	
OR		

•	Recommendation to genotype	++	
•	At least one genotype/phenotype mentioned as a contra-indication in the corresponding section	++	
Tota	al Score:	10+	0+
C a r	reason dis a Clinical Implication Second		Detentially
Cor	Corresponding Clinical Implication Score:		