

CYP2D6: metoprolol

1554/1555/1556

AUC = area under the concentration-time curve, AUEC = area under the time-effect curve, bpm = beats per minute, 95% CI = 95% confidence interval, Cl_{or} = oral clearance, C_{ss} = steady state plasma concentration, CTCAE = Common Terminology Criteria for Adverse Events, DBP = diastolic blood pressure, ECG = electrocardiogram, HR = heart rate, HM = α -hydroxy-metoprolol, IM = intermediate metaboliser (gene dose 0.25-1) (reduced CYP2D6 enzyme activity), MR = metabolic ratio, NM = normal metaboliser (gene dose 1.5-2.5) (normal CYP2D6 enzyme activity), NS = non-significant, NYHA = (categorisation of the severity of heart failure according to) the New York Heart Association, OR_{adj} = adjusted odds ratio, PM = poor metaboliser (gene dose 0) (absent CYP2D6 enzyme activity), *R*-M = *R*-metoprolol, RR = relative risk, S = significant, SBP = systolic blood pressure, S-M = S-metoprolol, t_{1/2} = half-life, UM = ultra-rapid metaboliser (gene dose ≥ 2.75) (elevated CYP2D6 enzyme activity)

Disclaimer: The Pharmacogenetics Working Group of the KNMP formulates the optimal recommendations for each phenotype group based on the available evidence. If this optimal recommendation cannot be followed due to practical restrictions, e.g. therapeutic drug monitoring or a lower dose is not available, the healthcare professional should consider the next best option.

Brief summary and justification of choices:

CYP2D6 converts metoprolol to inactive metabolites. The metoprolol dose required to achieve a therapeutic plasma concentration is therefore lower for patients with reduced CYP2D6 activity (IM and PM) and higher for patients with elevated CYP2D6 activity (UM) (Meloche 2022, Batty 2014, Rau 2009, Goryachkina 2008, Jin 2008, Seeringer 2008, Ismail 2006, Terra 2005, Nozawa 2005, Fux 2005, Zineh 2004, Kirchheiner 2004, Taguchi 2003, Rau 2002, Huang 1999, Koytchev 1998, Laurent-Kenesi 1993, Lennard 1983, and American SmPC Toprol-XL). Little correlation with the plasma concentration was found for the anti-hypertensive effect of metoprolol (statistically significant effects were found in a meta-analysis (Meloche 2020) and in 5 of 12 studies: Batty 2014, Rau 2009, Bijl 2009, Yuan 2008, and Laurent-Kenesi 1993; not significant: Chen 2018, Hamadeh 2014, Nozawa 2005, Fux 2005, Zineh 2004, Kirchheiner 2004, and Koytchev 1998), but a clear correlation was found for the effect as β -adrenergic blocker (lowering of the heart rate) (significant in a meta-analysis (Meloche 2020) and in 12 of 13 studies: Chen 2022, Meloche 2022, Gao 2017, Hamadeh 2014, Batty 2014, Rau 2009, Bijl 2009, Goryachkina 2008, Nozawa 2005, Kirchheiner 2004, Koyt-chev 1998, and Laurent-Kenesi 1993; not-significant Lewis 1991).

Because studies have shown a distinct effect on metoprolol plasma concentrations in IM, PM and UM patients, the KNMP Pharmacogenetics Working Group concluded that there is a gene-drug interaction.

PM: Wuttke 2002 including 9 PM found a higher percentage of PM in the group of patients with side effects, but a meta-analysis of 3 studies with 32 PM and 6 patient studies with 4-17 PM did not find an increase in adverse events or discontinuation due to adverse events for PM, IM+PM or for PM versus IM versus NM (Meloche 2020, Hamadeh 2014, Batty 2014, Rau 2009, Fux 2005, Zineh 2004, and Clark 1984).

In most of the studies, PM had little or no effect on blood pressure. Rau 2009 found an increase in the percentage of patients reaching the blood pressure target value for 17 PM, but Yuan 2008 found no increase in the prevalence of effective blood pressure reductions for 60 IM+PM, and Zineh 2014 found no increase in responders (patients with ≥10% reduction in diastolic blood pressure) for 4 PM.

In most patient studies, the heart rate reduction was greater for PM. However, only one of these studies (with 11 PM) investigated symptomatic bradycardia and did not find a significant effect of CYP2D6 on symptomatic bradycardia (Hamadeh 2014). This indicates that this effect might also be beneficial (higher effectiveness of metoprolol). In addition, Batty 2014 including 12 PM found that the difference in heart rate reduction compared to NM disappeared with a longer treatment duration (from 3 months).

Therefore, the clinical consequences of PM appear to be limited. However, as the effect on the metoprolol plasma concentration is large, the KNMP: Pharmacogenetics Working Group decided to issue a warning (yes/yes-interaction). For certain patients, a more gradual increase of the initial dose and/or a lower target dose may be more favourable.

IM: Chen 2022 found a higher rate of discontinuation due to intolerance and a higher incidence of all adverse events and cardiovascular adverse events (including bradycardia < 55 bpm) for 381 IM with cardiovascular diseases aged ≥ 60 years. There was no increase in non-cardiovascular adverse events. However, a meta-analysis of 3 studies with 594 non-PM did not find an increase in adverse events for IM and 4 patient studies with 4-112 IM did not find an increase in adverse events or discontinuation due to adverse events for IM, IM+PM or for PM versus IM versus NM (Meloche 2020, Hamadeh 2014, Batty 2014, Fux 2005, and Zineh 2004).</p>

In most of the studies, IM had little or no effect on blood pressure. In addition, Yuan 2008 found no increase in

the prevalence of effective blood pressure reductions for 60 IM+PM.

In most patient studies, the heart rate reduction was greater for IM. However, only one of these studies investigated symptomatic bradycardia and did not find it in the 15 IM (Hamadeh 2014). This indicates that this effect might be beneficial (higher effectiveness of metoprolol). In addition, Batty 2014 including 112 IM found that the difference in heart rate reduction compared to NM disappeared with a longer treatment duration (from 3 months).

Therefore, the clinical consequences of IM appear to be limited. However, as the effect on the metoprolol plasma concentration is considerable, the KNMP: Pharmacogenetics Working Group decided to issue a warning (yes/yes-interaction). For certain patients, a more gradual increase of the initial dose and/or a lower target dose may be more favourable.

UM: Three studies and a meta-analysis examined the clinical consequences of UM.

Goryachkina 2008 found for 7 UM with a recent acute myocardial infarction that the heart rate only decreased by 9 beats/minute to 69 beats per minute. Furthermore, the percentage UM in the group with a disruption of the ventricular rhythm was 11 times higher than in the group without disruption (22% versus 2%). However, the dose that was used was low: average 0.9 mg/kg per day, which is equivalent to 72 mg/day for a patient weighing 80 kg. The maximum dose of metoprolol for secondary prevention of a myocardial infarction is 200 mg/day. The authors also indicated that underdosage may have occurred, because a significant number of patients did not achieve an effective dose of metoprolol.

The meta-analysis of Meloche 2020 did not show a difference in resting heart rate (5 studies with 711 non-PM) and blood pressure reduction (5 studies with 764 non-PM) for UM.

Meloche 2022, including 68x UM+gene dose 2.5, found a decrease in heart rate reduction with increasing gene dose. However, the difference in heart rate with NM was small. The mean values for both groups were between 60 and 70 bpm.

Hamadeh 2014 found a decrease in the heart rate reduction by 2% for 7x UM + 1x gene dose 2.25. The reduction in systolic and diastolic blood pressure did not differ significantly between the genotypes. These were hypertension patients and the target value of the dose was 200 mg/day.

So, the detrimental effect of UM on the reduction of the heart rate appears to be limited at an adequate dose. Furthermore, the maximum dose of metoprolol for many indications is higher than or equal to the dose of 200 mg/day at which a good reduction in heart rate was observed. The maximum dose is 400 mg/day for angina pectoris, 200 mg/day for arrhythmia and secondary prevention of a myocardial infarction and 150 mg/day (immediate release) or 200 mg/day (controlled release) for heart failure. However, as the effect on the metoprolol plasma concentration is considerable, the KNMP: Pharmacogenetics Working Group decided to issue a warning (yes/yes-interaction). As a general rule, it would be favourable for UM to use the maximum dose for the relevant indication as a target dose.

An overview of the observed clinical and kinetic effects per phenotype is provided in the background information text of the gene-drug interactions in the KNMP Kennisbank. You may also have access to this background information text via your pharmacy or physician electronic decision support system. A substantiation of the dose recommendation is provided below.

Justification of dose recommendation

Dose adjustments have been calculated on the basis of AUC, C_{ss} or Cl_{or} of metoprolol or - if known - S-metoprolol. Where the effect is only known versus NM + IM + UM (e.g. in Laurent-Kenesi 1993), the effect of NM + IM + UM is assumed to be similar to that of NM, due to the much lower prevalence of IM and UM.

- PM: In order to achieve a plasma concentration comparable to that of NM, the dose for PM must be reduced to 25% of the normal dose. For a total of 62 PM from 11 studies, the weighted mean of the calculated dose adjustments was a reduction to 19% (range 3%-34%; median 18%) (Rau 2009, Goryachkina 2008, Seeringer 2008, Ismail 2006, Fux 2005, Terra 2005, Kirchheiner 2004, Zineh 2004, Rau 2002, Laurent-Kenesi 1993, and Lennard 1983). This was rounded off to 25% to be more achievable in clinical practice. This value corresponds well to the calculated value of 22% based on the median plasma concentration for 12 PM (Batty 2014).
- IM: In order to achieve a plasma concentration comparable to that of NM, the dose for IM must be reduced to 50% of the normal dose. For a total of 234 IM from 12 studies, the weighted mean of the calculated dose adjustments was a reduction to 51% (range 15%-95%, median 44%) (Rau 2009, Goryachkina 2008, Jin 2008, Ismail 2006, Fux 2005, Nozawa 2005, Terra 2005, Zineh 2004, Taguchi 2003, Rau 2002, Huang 1999, and Koytchev 1998). This was rounded off to 50% to be more achievable in clinical practice. This value corresponds well to the calculated value of 48% based on the median plasma concentration for 112 IM (Batty 2014).
- UM: In order to achieve a plasma concentration comparable to that of NM, the dose for UM must be increased to 250% of the normal dose. For a total of 35 UM from 5 studies, the weighted mean of the calculated dose adjustments was an increase to 247% (range 166%-468%, median 219%) (Goryachkina 2008, Seeringer 2008, Ismail 2006, Fux 2005, and Kirchheiner 2004,). This was rounded off to 250% to be more achievable in clinical practice. However, a dose increase that exceeds the maximum registered dose can cause problems if the metabolites can cause side effects. Furthermore, the maximum dose of metoprolol for many indications is higher than or equal to the dose of 200 mg/day at which a good reduction in heart rate was observed. Therefore, we recommend the use of the maximum dose for the relevant indication for UM.

Recommendation concerning pre-emptive genotyping, including justification of choices:

The KNMP Pharmacogenetics Working Group considers genotyping before starting metoprolol to be potentially beneficial for the prevention of side effects and drug effectiveness. Genotyping can be considered on an individual patient basis. If, however, the genotype is available, the KNMP Pharmacogenetics Working Group recommends adhering to the gene-drug guideline.

The clinical implication of the gene-drug interaction scores 0 out of the maximum of 10 points (with pre-emptive genotyping considered to be potentially beneficial for scores ranging from 0 to 2 points) (see also the clinical implication score tables at the end of this risk analysis):

Severe clinical effects were only observed in UM in the study of Goryachkina 2008. The percentage UM in the group with a disruption of the ventricular rhythm was 11 times higher than in the group without disruption (22% versus 2%). However, the metoprolol concentration did not differ significantly between the groups with and without disruption, arguing against a causative role of the UM phenotype. For this reason, this severity code D (CTCAE grade 3) was ignored for the clinical implication score. No other severe clinical effects were observed (maximum severity code C, corresponding to CTCAE grade 2). This results in a score of 0 out of the maximum of 2 points for the first criterion of the clinical implication score, the clinical effect associated with the gene-drug interaction (only points for CTCAE grade ≥ 3).

The lack of a severe clinical effect also results in a score of 0 of the maximum of 3 points for the second and third criterion of the clinical implication score: the level of evidence supporting an associated clinical effect grade \geq 3 (only points for at least one study showing an association with a clinical effect grade \geq 3) and the number needed to genotype (NNG) in the Dutch population to prevent one clinical effect code \geq D (grade \geq 3) (only points for NNG < 1000). The Dutch Summaries of Product Characteristics (SmPCs) Selokeen 13-5-2021 (metoprolol for injection) and Metoprololtartraat Mylan 15-6-2021 (metoprolol tablets) do not mention any variant CYP2D6 genotype/phenotype. This results in 0 out of the maximum of 2 points for the fourth and last criterion of the clinical implication score, the pharmacogenetics information in the SmPC (only points for at least one genotype/phenotype mentioned in the SmPC).

The table below uses the KNMP nomenclature for NM, PM, IM and UM. As a result, the definitions of NM, PM, IM and UM in the table below can differ from the definitions used by the authors in the article.

Source	Code	Effect			Comments
ref. 1 Chen J et al. Impact of the CYP2D6 geno- type on meto- prolol tolerance and adverse events in elderly Chinese patients with cardiovascu- lar diseases. Front Pharmacol 2022;13:876392. PMID: 35462926.	3	1036 patients with cardio (mean 74 years) were tree The metoprolol maintena weeks if metoprolol was Comedication with CYP2 and other antiarrhythmic moderate or severe liver ORs were determined by gender, Age-Adjusted Ch number of concomitant d doses. Genotyping: - 651x NM - 381x IM	vascular diseases aged ≥ 6 eated with metoprolol for 12 ince dose was defined as th not discontinued. 2D6 inhibitors, other antihyp drugs was not excluded. Pa and renal diseases were ex logistic regression and adj narlson Comorbidity Index (rugs, and categories of met	o years weeks. he dose at 12 ertensives atients with ccluded. usted for ACCI), the toprolol initial	Authors' conclu- sion: 'We conclude that IMs have lower tolerance and higher inci- dence of meto- prolol-related adverse events than NMs in elderly Chinese patients with cardiovascular diseases. CYP- 2D6 genotyping is justifiable in
		Results: Results compared to N	M.		elderly patients to minimize the
	IM [.] C	% of patients discon	IM	value for NM	risk of adverse events and ensure the
		tinuing metoprolol due to intolerance	x 1.5 (5)	0.3%	benefits of metoprolol.'
		% of patients with adver	rse events		
		all adverse events	OR _{ad} j = 1.37 (95% CI: 1.05-1.79) (S)	48.4%	
		cardiovascular adverse events	OR _{adj} = 1.60 (95% CI: 1.22-2.09) (S)	38.2%	
		postural hypotension	x 1.8 (S)	6.0%	
		bradycardia (< 55 bpm)	x 1.3 (S)	21.5%	
		asystole	x 3.9 (S)	0.8%	
		second- or third- degree atrioventricu- lar block	Trend for an increase (p = 0.101) (NS).	11.4%	
		syncope	x 3.1 (S)	2.0%	

ref. 1, continua-		cold extrem	nities	NS		9.2	%	
tion		non-cardio	vascular	NS		17.	8%	1
		adverse ev	/ents					
		dyspnoea		NS		8.8	%	1
		sleep distu	rbances +	NS		3.5	%	1
		fatigue						
		headache	or dizzi-	Trend for	or a decreas	e (p 5.5	%	
		ness		= 0.092)) (NS).			
		depression	า	NS		2.6	%	
		Maintenan	ce daily dos	se (median	value witho	out and mea	an value	
		with correc	ction for boa	ly weight) ii	n patients w	vith different	t initial	
		metoprolol	doses					-
			initial					
			dose					-
		mainte-	all	x 0.50 (S	S)	50	mg	-
		nance		x 0.81 (S	5)	0.5	2 mg/kg	-
		aose	≤ 12.5 mg	NS		12.	5 mg	-
			10 75 05	NS	2 \10	0.3	5 mg/kg	-
			18.75-25	x 1.00 (S	S) ^a	25	mg	-
			mg	x 0.70 (S	S)	0.4	4 mg/kg	-
			31.25-50	x 1.00 (S	<u>S)a</u>	50	mg	-
			mg	x 0.84 (S	S)	0.5	/ mg/kg	-
			> 50mg	x 1.00 (S	<u>S)a</u>	50	mg	-
				x 0.71 (S	5)	0.73	3 mg/kg	-
				^a NMs a	nd IMs have	e the same	median	
				values b	out amerent	distribution	snapes	
				or maint	enance dos	ses. In Man	n-vvnil-	
				rank tha	n Me leadi	ing to the st	tatistical	
				significa	in inis, ieau	ing to the si	ne	
				Jigrinica	nee betwee	in two grou	03.	-
		Note [,] Genot	tvping was r	performed f	for *2 *5 *1	0 and *14	These	
		are the mos	t important	nene varia	nts in this C	hinese non	ulation.	
			L IIIIDUI LAIIL					
ref. 2	4	996 patients	were treate	ed with met	toprolol (me	an dose 84	1.3	Authors' conclu-
ref. 2 Meloche M et al.	4	996 patients mg/day (ran	were treate ge 6.25-400	ed with met mg/day).	toprolol (me	an dose 84	1.3	Authors' conclu- sion:
ref. 2 Meloche M et al. Leveraging large	4	996 patients mg/day (ran Plasma sam	were treate ge 6.25-400 ples were c	ed with me) mg/day). collected at	toprolol (me random tim	ean dose 84	4.3 ative to	Authors' conclu- sion: 'CYP2D6-infer-
ref. 2 Meloche M et al. Leveraging large observational	4	996 patients mg/day (ran Plasma sam the previous	s were treate ge 6.25-400 ples were c s metoprolol	ed with me) mg/day). collected at dose.	toprolol (me random tim	an dose 84	4.3 ative to	Authors' conclu- sion: 'CYP2D6-infer- red phenotype
ref. 2 Meloche M et al. Leveraging large observational studies to disco-	4	996 patients mg/day (ran Plasma sam the previous Relevant co	were treate ge 6.25-400 pples were c metoprolol medication	ed with met) mg/day). collected at dose. was not ex	toprolol (me random tim cluded, but	all models	ative to	Authors' conclu- sion: 'CYP2D6-infer- red phenotype was significantly
ref. 2 Meloche M et al. Leveraging large observational studies to disco- ver genetic deter-	4	996 patients mg/day (ran Plasma sam the previous Relevant co ted for CYP	were treate ge 6.25-400 pples were cost metoprolol medication 2D6 inhibito	ed with me) mg/day). collected at dose. was not ex rs. 3.6% of	toprolol (me random tim ccluded, but f patients us	an dose 84 nepoints rel all models sed either o	I.3 ative to correc- ne or	Authors' conclu- sion: 'CYP2D6-infer- red phenotype was significantly associated with
ref. 2 Meloche M et al. Leveraging large observational studies to disco- ver genetic deter- minants of drug	4	996 patients mg/day (ran Plasma sam the previous Relevant co ted for CYP2 more moder	were treate ge 6.25-400 pples were c metoprolol medication 2D6 inhibito rate and/or s	ed with me mg/day). collected at dose. was not ex rs. 3.6% of strong CYP	toprolol (me random tim cluded, but f patients us 22D6 inhibite	an dose 84 nepoints rel all models sed either o ors.	I.3 ative to correc- ne or	Authors' conclu- sion: 'CYP2D6-infer- red phenotype was significantly associated with both metoprolol
ref. 2 Meloche M et al. Leveraging large observational studies to disco- ver genetic deter- minants of drug concentrations: a	4	996 patients mg/day (ran Plasma sam the previous Relevant co ted for CYP: more moder Multiple line	s were treate ge 6.25-400 pples were c metoprolol medication 2D6 inhibito rate and/or s ar regressio	ed with me or mg/day). collected at dose. was not ex rs. 3.6% of strong CYP on analysis	toprolol (me random tim ccluded, but f patients us 22D6 inhibito was used to	an dose 84 nepoints rel all models sed either o ors. o investigat	I.3 ative to correc- ne or ce asso-	Authors' conclu- sion: 'CYP2D6-infer- red phenotype was significantly associated with both metoprolol and α-OH-meto- proled in upod
ref. 2 Meloche M et al. Leveraging large observational studies to disco- ver genetic deter- minants of drug concentrations: a proof-of-concept	4	996 patients mg/day (ran Plasma sam the previous Relevant co ted for CYP2 more moder Multiple line ciations.	were treate ge 6.25-400 pples were cost medication 2D6 inhibito rate and/or s ar regressio	ed with met o mg/day). collected at dose. was not ex rs. 3.6% of strong CYP on analysis	toprolol (me random tim ccluded, but f patients us 22D6 inhibito was used to	an dose 84 nepoints rel all models sed either o ors. o investigat	I.3 ative to correc- ne or te asso-	Authors' conclu- sion: 'CYP2D6-infer- red phenotype was significantly associated with both metoprolol and α-OH-meto- prolol in unad- justed and ad
ref. 2 Meloche M et al. Leveraging large observational studies to disco- ver genetic deter- minants of drug concentrations: a proof-of-concept study.	4	996 patients mg/day (ran Plasma sam the previous Relevant co ted for CYP2 more moder Multiple line ciations.	were treate ge 6.25-400 mples were c medication 2D6 inhibito rate and/or s ar regressio	ed with met o mg/day). collected at dose. was not ex rs. 3.6% of strong CYP on analysis	toprolol (me random tim cluded, but f patients us 22D6 inhibito was used to	an dose 84 nepoints rel all models sed either o ors. o investigat	I.3 ative to correc- ne or re asso-	Authors' conclu- sion: 'CYP2D6-infer- red phenotype was significantly associated with both metoprolol and α-OH-meto- prolol in unad- justed and ad- justed models
ref. 2 Meloche M et al. Leveraging large observational studies to disco- ver genetic deter- minants of drug concentrations: a proof-of-concept study. Clin Transl Sci 2022:15:1063-	4	996 patients mg/day (ran Plasma sam the previous Relevant co ted for CYP2 more moder Multiple line ciations. Genotyping: - 68x LIM+g	were treate ge 6.25-400 pples were c medication 2D6 inhibito rate and/or s ar regressio	ed with met o mg/day). collected at dose. was not ex rs. 3.6% of strong CYP on analysis	toprolol (me cluded, but f patients us 2D6 inhibite was used te	an dose 84 nepoints rel all models sed either o ors. o investigat	I.3 ative to correc- ne or re asso-	Authors' conclu- sion: 'CYP2D6-infer- red phenotype was significantly associated with both metoprolol and α-OH-meto- prolol in unad- justed and ad- justed models.
ref. 2 Meloche M et al. Leveraging large observational studies to disco- ver genetic deter- minants of drug concentrations: a proof-of-concept study. Clin Transl Sci 2022;15:1063- 73	4	996 patients mg/day (ran Plasma sam the previous Relevant co ted for CYP: more moder Multiple line ciations. Genotyping: - 68x UM+g - 542x NM	were treate ge 6.25-400 pples were c metoprolol medication 2D6 inhibito rate and/or s ar regression	ed with me o mg/day). collected at dose. was not ex rs. 3.6% of strong CYP on analysis	toprolol (me cluded, but f patients us 2D6 inhibito was used to	an dose 84 nepoints rel all models sed either o ors. o investigat	I.3 ative to correc- ne or re asso-	Authors' conclu- sion: 'CYP2D6-infer- red phenotype was significantly associated with both metoprolol and α-OH-meto- prolol in unad- justed and ad- justed models. Models for meto prolol daily dose
ref. 2 Meloche M et al. Leveraging large observational studies to disco- ver genetic deter- minants of drug concentrations: a proof-of-concept study. Clin Transl Sci 2022;15:1063- 73. PMID: 35122397.	4	996 patients mg/day (ran Plasma sam the previous Relevant co ted for CYP: more moder Multiple line ciations. Genotyping: - 68x UM+g - 542x NM - 342x IM	s were treate ge 6.25-400 pples were c metoprolol medication 2D6 inhibito rate and/or s ar regressio	ed with me o mg/day). collected at dose. was not ex rs. 3.6% of strong CYP on analysis	toprolol (me cluded, but f patients us 2D6 inhibito was used to	an dose 84 nepoints rel all models sed either o ors. o investigat	I.3 ative to correc- ne or te asso-	Authors' conclu- sion: 'CYP2D6-infer- red phenotype was significantly associated with both metoprolol and α-OH-meto- prolol in unad- justed and ad- justed models. Models for meto prolol daily dose showed
ref. 2 Meloche M et al. Leveraging large observational studies to disco- ver genetic deter- minants of drug concentrations: a proof-of-concept study. Clin Transl Sci 2022;15:1063- 73. PMID: 35122397.	4	996 patients mg/day (ran Plasma sam the previous Relevant co ted for CYP2 more moder Multiple line ciations. Genotyping: - 68x UM+gi - 542x NM - 342x IM - 44x PM	were treate ge 6.25-400 pples were c metoprolol medication 2D6 inhibito ate and/or s ar regressio	ed with me mg/day). collected at dose. was not ex rs. 3.6% of strong CYP on analysis	toprolol (me cluded, but f patients us 22D6 inhibito was used to	an dose 84 nepoints rel all models sed either o ors. o investigat	I.3 ative to correc- ne or te asso-	Authors' conclu- sion: 'CYP2D6-infer- red phenotype was significantly associated with both metoprolol and α-OH-meto- prolol in unad- justed and ad- justed models. Models for meto prolol daily dose showed consistent
ref. 2 Meloche M et al. Leveraging large observational studies to disco- ver genetic deter- minants of drug concentrations: a proof-of-concept study. Clin Transl Sci 2022;15:1063- 73. PMID: 35122397.	4	996 patients mg/day (ran Plasma sam the previous Relevant co ted for CYP2 more moder Multiple line ciations. Genotyping: - 68x UM+g - 542x NM - 342x IM - 44x PM	were treate ge 6.25-400 pples were cost medication 2D6 inhibito rate and/or st ar regression ene dose 2.	ed with me or mg/day). collected at dose. was not ex rs. 3.6% of strong CYP on analysis	toprolol (me cluded, but f patients us 22D6 inhibito was used to	an dose 84 nepoints rel all models sed either o ors. o investigat	I.3 ative to correc- ne or te asso-	Authors' conclu- sion: 'CYP2D6-infer- red phenotype was significantly associated with both metoprolol and α -OH-meto- prolol in unad- justed and ad- justed models. Models for meto prolol daily dose showed consistent results.'
ref. 2 Meloche M et al. Leveraging large observational studies to disco- ver genetic deter- minants of drug concentrations: a proof-of-concept study. Clin Transl Sci 2022;15:1063- 73. PMID: 35122397.	4	996 patients mg/day (ran Plasma sam the previous Relevant co ted for CYP2 more moder Multiple line ciations. Genotyping: - 68x UM+g - 542x NM - 342x IM - 44x PM Results:	were treate ge 6.25-400 pples were c medication 2D6 inhibito rate and/or s ar regression	ed with met o mg/day). collected at dose. was not ex rs. 3.6% of strong CYP on analysis	toprolol (me cluded, but f patients us 22D6 inhibito was used to	an dose 84 nepoints rel all models sed either o ors. o investigat	I.3 ative to correc- ne or re asso-	Authors' conclusion: 'CYP2D6-infer- red phenotype was significantly associated with both metoprolol and α -OH-meto- prolol in unad- justed and ad- justed models. Models for meto prolol daily dose showed consistent results.'
ref. 2 Meloche M et al. Leveraging large observational studies to disco- ver genetic deter- minants of drug concentrations: a proof-of-concept study. Clin Transl Sci 2022;15:1063- 73. PMID: 35122397.	4	996 patients mg/day (ran Plasma sam the previous Relevant co ted for CYP: more moder Multiple line ciations. Genotyping: - 68x UM+g - 542x NM - 342x IM - 342x IM - 44x PM Results: Results:	were treate ge 6.25-400 pples were c medication 2D6 inhibito ar regression ene dose 2.	d with me or mg/day). collected at dose. was not ex rs. 3.6% of strong CYP on analysis	toprolol (me cluded, but f patients us 2D6 inhibite was used to	an dose 84 nepoints rel all models sed either o ors. o investigat	I.3 ative to correc- ne or a asso-	Authors' conclu- sion: 'CYP2D6-infer- red phenotype was significantly associated with both metoprolol and α-OH-meto- prolol in unad- justed and ad- justed models. Models for meto prolol daily dose showed consistent results.'
ref. 2 Meloche M et al. Leveraging large observational studies to disco- ver genetic deter- minants of drug concentrations: a proof-of-concept study. Clin Transl Sci 2022;15:1063- 73. PMID: 35122397.	4	996 patients mg/day (ran Plasma sam the previous Relevant co ted for CYP more moder Multiple line ciations. Genotyping: - 68x UM+g - 542x NM - 342x IM - 342x IM - 44x PM Results: Results co	s were treate ge 6.25-400 pples were c medication 2D6 inhibito rate and/or s ar regression ene dose 2.	with me mg/day). collected at dose. was not ex rs. 3.6% of strong CYP on analysis 5	toprolol (me random tim ccluded, but f patients us 2D6 inhibito was used to	all models all models ed either o ors. o investigat	I.3 ative to correc- ne or te asso-	Authors' conclu- sion: 'CYP2D6-infer- red phenotype was significantly associated with both metoprolol and α-OH-meto- prolol in unad- justed and ad- justed models. Models for meto prolol daily dose showed consistent results.'
ref. 2 Meloche M et al. Leveraging large observational studies to disco- ver genetic deter- minants of drug concentrations: a proof-of-concept study. Clin Transl Sci 2022;15:1063- 73. PMID: 35122397.	4	996 patients mg/day (ran Plasma sam the previous Relevant co ted for CYP2 more moder Multiple line ciations. Genotyping: - 68x UM+gi - 542x NM - 342x IM - 342x IM - 44x PM Results: Results co	were treate ge 6.25-400 pples were c medication 2D6 inhibito rate and/or s ar regression ene dose 2.	with me mg/day). collected at dose. was not ex rs. 3.6% of strong CYP on analysis 5	toprolol (me random tim ccluded, but f patients us 22D6 inhibito was used to	united pop an dose 84 nepoints rel all models sed either o ors. o investigat	I.3 ative to correc- ne or te asso- te asso- value for NM	Authors' conclu- sion: 'CYP2D6-infer- red phenotype was significantly associated with both metoprolol and α-OH-meto- prolol in unad- justed and ad- justed models. Models for meto prolol daily dose showed consistent results.'
ref. 2 Meloche M et al. Leveraging large observational studies to disco- ver genetic deter- minants of drug concentrations: a proof-of-concept study. Clin Transl Sci 2022;15:1063- 73. PMID: 35122397.	4	996 patients mg/day (ran Plasma sam the previous Relevant co ted for CYP2 more moder Multiple line ciations. Genotyping: - 68x UM+g - 542x NM - 342x IM - 44x PM Results: Results co	were treate ge 6.25-400 pples were cost medication 2D6 inhibito ate and/or st ar regression ene dose 2.	or of the met of mg/day). collected at dose. was not ex rs. 3.6% of strong CYP on analysis 5	toprolol (me random tim cluded, but f patients us 22D6 inhibito was used to	UM+ gene dose 2.5	value for NM	Authors' conclusion: 'CYP2D6-infer- red phenotype was significantly associated with both metoprolol and α -OH-meto- prolol in unad- justed and ad- justed models. Models for meto prolol daily dose showed consistent results.'
ref. 2 Meloche M et al. Leveraging large observational studies to disco- ver genetic deter- minants of drug concentrations: a proof-of-concept study. Clin Transl Sci 2022;15:1063- 73. PMID: 35122397.	4	996 patients mg/day (ran Plasma sam the previous Relevant co ted for CYP2 more moder Multiple line ciations. Genotyping: - 68x UM+g - 542x NM - 342x IM - 342x IM - 44x PM Results: Results co resting hea	were treate ge 6.25-400 pples were cost medication 2D6 inhibito rate and/or s ar regression ene dose 2.	solicities of the second secon	toprolol (me random tim cluded, but f patients us 2D6 inhibito was used to IM	UM+ gene dose 2.5 ing CYP-	value for NM approx	Authors' conclu- sion: 'CYP2D6-infer- red phenotype was significantly associated with both metoprolol and α-OH-meto- prolol in unad- justed and ad- justed models. Models for meto prolol daily dose showed consistent results.'
ref. 2 Meloche M et al. Leveraging large observational studies to disco- ver genetic deter- minants of drug concentrations: a proof-of-concept study. Clin Transl Sci 2022;15:1063- 73. PMID: 35122397.	4	996 patients mg/day (ran Plasma sam the previous Relevant co ted for CYP: more moder Multiple line ciations. Genotyping: - 68x UM+g - 542x NM - 342x IM - 342x IM - 342x IM Results: Results co resting hea	were treate ge 6.25-400 pples were cost medication 2D6 inhibito ar regression ene dose 2.	increase v 2019 20 20 20 20 20 20 20 20 20 20	IM IM IM Im Im Im Im Im Im Im Im Im Im Im Im Im	UM+ dose 2.5 ing CYP- oth	value for NM	Authors' conclu- sion: 'CYP2D6-infer- red phenotype was significantly associated with both metoprolol and α-OH-meto- prolol in unad- justed and ad- justed models. Models for meto prolol daily dose showed consistent results.'
ref. 2 Meloche M et al. Leveraging large observational studies to disco- ver genetic deter- minants of drug concentrations: a proof-of-concept study. Clin Transl Sci 2022;15:1063- 73. PMID: 35122397.	4	996 patients mg/day (ran Plasma sam the previous Relevant co ted for CYP more moder Multiple line ciations. Genotyping: - 68x UM+g - 542x NM - 342x IM - 342x IM - 44x PM Results: Results co resting hea	were treate ge 6.25-400 pples were c medication 2D6 inhibito ar regressic ene dose 2.	d with met or mg/day). collected at dose. was not ex rs. 3.6% of strong CYP on analysis 5 5 <u>JM:</u> PM Increase without ac or minor metal 2D6 gene	IM IM with increas dose (S, bo	UM+ gene dose 2.5 ing CYP- oth	value for NM approx 64 bpm	Authors' conclu- sion: 'CYP2D6-infer- red phenotype was significantly associated with both metoprolol and α-OH-meto- prolol in unad- justed and ad- justed models. Models for meto prolol daily dose showed consistent results.'
ref. 2 Meloche M et al. Leveraging large observational studies to disco- ver genetic deter- minants of drug concentrations: a proof-of-concept study. Clin Transl Sci 2022;15:1063- 73. PMID: 35122397.	4	996 patients mg/day (ran Plasma sam the previous Relevant co ted for CYP2 more moder Multiple line ciations. Genotyping: - 68x UM+gi - 542x NM - 342x IM - 342x IM - 44x PM Results: Results co	were treate ge 6.25-400 pples were cost medication 2D6 inhibito ate and/or st ar regression ene dose 2.	diversional sectors of the sector of the sectors of	toprolol (me random tim cluded, but f patients us 22D6 inhibito was used to was used to IM IM int increas dose (S, bo djustment ar ot for age, fe	UM+ gene dose 2.5 ing CYP- oth md with emale	value for NM approx 64 bpm	Authors' conclu- sion: 'CYP2D6-infer- red phenotype was significantly associated with both metoprolol and α-OH-meto- prolol in unad- justed and ad- justed models. Models for meto prolol daily dose showed consistent results.'
ref. 2 Meloche M et al. Leveraging large observational studies to disco- ver genetic deter- minants of drug concentrations: a proof-of-concept study. Clin Transl Sci 2022;15:1063- 73. PMID: 35122397.	4	996 patients mg/day (ran Plasma sam the previous Relevant co ted for CYP2 more moder Multiple line ciations. Genotyping: - 68x UM+g - 542x NM - 342x IM - 342x IM - 44x PM Results: Results co	were treate ge 6.25-400 pples were cost medication 2D6 inhibito ate and/or st ar regression ene dose 2.	increase v increase v increa	IM IM with increas dose (S, bo	UM+ gene dose 2.5 ing CYP- oth md with emale , weight, brilletion	value for NM approx 64 bpm	Authors' conclu- sion: 'CYP2D6-infer- red phenotype was significantly associated with both metoprolol and α-OH-meto- prolol in unad- justed and ad- justed models. Models for meto prolol daily dose showed consistent results.'
ref. 2 Meloche M et al. Leveraging large observational studies to disco- ver genetic deter- minants of drug concentrations: a proof-of-concept study. Clin Transl Sci 2022;15:1063- 73. PMID: 35122397.	4	996 patients mg/day (ran Plasma sam the previous Relevant co ted for CYP2 more moder Multiple line ciations. Genotyping: - 68x UM+g - 542x NM - 342x IM - 342x IM - 44x PM Results: Results co	were treate ge 6.25-400 pples were cost medication 2D6 inhibito rate and/or st ar regression ene dose 2.	solie ctant ed with mei o mg/day). collected at dose. was not ex rs. 3.6% of strong CYP on analysis 5 5 <u>1M:</u> PM Increase v 2D6 gene without ac adjustmer sex, meto atrial flutte	IM Image of the second	UM+ gene dose 2.5 ing CYP- oth d with emale , weight, brillation, rugs and	value for NM approx 64 bpm	Authors' conclu- sion: 'CYP2D6-infer- red phenotype was significantly associated with both metoprolol and α-OH-meto- prolol in unad- justed and ad- justed models. Models for meto prolol daily dose showed consistent results.'
ref. 2 Meloche M et al. Leveraging large observational studies to disco- ver genetic deter- minants of drug concentrations: a proof-of-concept study. Clin Transl Sci 2022;15:1063- 73. PMID: 35122397.	4 PM: A	996 patients mg/day (ran Plasma sam the previous Relevant co ted for CYP2 more moder Multiple line ciations. Genotyping: - 68x UM+g - 542x NM - 342x IM - 342x IM - 44x PM Results: Results co resting hea	were treate ge 6.25-400 pples were cost medication 2D6 inhibito ar regression ene dose 2.	A meta distribution of the second sec	IM IM Image of the set	UM+ gene dose 2.5 ing CYP- oth nd with emale , weight, brillation, rugs, and	value for NM approx 64 bpm	Authors' conclu- sion: 'CYP2D6-infer- red phenotype was significantly associated with both metoprolol and α-OH-meto- prolol in unad- justed and ad- justed models. Models for meto prolol daily dose showed consistent results.'
ref. 2 Meloche M et al. Leveraging large observational studies to disco- ver genetic deter- minants of drug concentrations: a proof-of-concept study. Clin Transl Sci 2022;15:1063- 73. PMID: 35122397.	4 PM: A IM: A	996 patients mg/day (ran Plasma sam the previous Relevant co ted for CYP more moder Multiple line ciations. Genotyping: - 68x UM+g - 542x NM - 342x IM - 342x IM - 44x PM Results: Results co resting hea	were treate ge 6.25-400 pples were c medication 2D6 inhibito ate and/or s ar regressic ene dose 2.	A mericipation of the second s	IM IM Image description of the second inhibitors of the second inhibitors of the second inhibitors of the second inhibitors of the second ting beauting the second inhibitors of the second inhibitor of the se	UM+ gene dose 2.5 ing CYP- oth dwith emale , weight, brillation, rugs, and	value for NM approx 64 bpm	Authors' conclu- sion: 'CYP2D6-infer- red phenotype was significantly associated with both metoprolol and α-OH-meto- prolol in unad- justed and ad- justed models. Models for meto prolol daily dose showed consistent results.'
ref. 2 Meloche M et al. Leveraging large observational studies to disco- ver genetic deter- minants of drug concentrations: a proof-of-concept study. Clin Transl Sci 2022;15:1063- 73. PMID: 35122397.	4 PM: A IM: A UM: A	996 patients mg/day (ran Plasma sam the previous Relevant co ted for CYP2 more moder Multiple line ciations. Genotyping: - 68x UM+gi - 542x NM - 342x IM - 342x IM - 44x PM Results: Results co resting hea	were treate ge 6.25-400 pples were c medication 2D6 inhibito rate and/or s ar regression ene dose 2.	A meril ad with meril b mg/day). collected at dose. was not ex rs. 3.6% of strong CYP on analysis 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	IM IM Im Im Im Im Im Im Im Im Im Im Im Im Im	UM+ gene dose 2.5 ing CYP- oth d with emale , weight, brillation, rugs, and ate was of or PM	value for NM approx 64 bpm	Authors' conclu- sion: 'CYP2D6-infer- red phenotype was significantly associated with both metoprolol and α-OH-meto- prolol in unad- justed and ad- justed models. Models for meto prolol daily dose showed consistent results.'

ref. 2, continua-			for the other phenotypes.		
tion		daily metoprolol	x 0.91 x 0.85 x 1.08	88.6	
		dose	S for the comparison between	mg	
			the phenotypes, both without	-	
			adjustment and with adjust-		
			ment for age, female sex,		
			weight, and CYP2D6 inhibi-		
			tors.		
		metoprolol plasma	x 2.67 x 1.50 x 0.82	101	
		concentration	S for the comparison between	ng/ml	
			the phenotypes, both without		
			adjustment and with adjust-		
			ment for age, female sex,		
			CVP2D6 inhibitors		
			Adjustment for the metoprolol		
			dose increased the associa-		
			tion		
		a-hydroxymetoprolol	x 0 05 x 0 31 x 1 24	52.2	
		plasma concentra-	S for the comparison between	na/ml	
		tion	the phenotypes, both without	0	
			adjustment and with adjust-		
			ment for age, female sex,		
			metoprolol dose, weight, and		
			CYP2D6 inhibitors.		
		Note: Genotyping was	performed for *2 through *12, *14,	*15,	
		*17, *19, *20, *29, *41,	*69, *109 and gene multiplication.	These	
		are the most important	gene variants in this Canadian po	pulation.	
ref. 3	3	Meta-analyses of 11 stu	Idles investigating the effect of CY	(P2D6	Authors' conclu-
CVP2D6 poly		or booltby voluntoors (1	Letudy)	studies)	SION:
morphism and its		If articles translated der	notypes to phenotypes, the denoty	ne-	any CYP2D6
impact on the		phenotype translation of	of the article was used. Otherwise	deno-	metabolic capa-
clinical response		types were translated to	p phenotypes according to the KN	MP	cities appear to
to metoprolol: a		Pharmacogenetics Wor	king Group.		have increased
systematic		The meta-analysis of he	eart rate reduction was based on 4	4 titrated	reduction in
review and meta-		dose studies in patients	s with a total of 686 non-PM and 3	5 PM	diastolic blood
analysis.		and 1 fixed-dose study	in healthy volunteers with 25 non-	PM and	pressure, heart
Br J Clin Phar-		4 PM. The meeter en elveres of h		l	rate and systolic
macol 2020-96-1015		titrated doop studion in	notion pressure reduction were bas	ed on 4	during motopro
2020,00.1013-		PM (the same titrated d	patients with a total of 000 holl-right lose studies as in the heart rate re	duction	lol treatment
PMID: 32090368		meta-analysis) and 1 fix	xed-dose study in patients with 78	non-PM	and may be at
		and 43 PM.	······································		a higher risk of
		The meta-analysis of a	dverse events was based on 3 stu	dies in	bradycardia
		patients with a total of 3	324 non-PM and 32 PM.		compared to
		The meta-analysis of bi	radycardia (< 60 bpm) was based	on 4	patients with
		studies in patients with	a total of 594 non-PM and 49 PM.		active CYP2D6
		The meta-analysis of da	ally metoprolol dose was based or	18	phenotypes.
		Studies in patients with	a total of 728 non-PM and 81 PM.	Nudad in	Further prospec-
		this risk analysis senar	se meta-analyses, 9 were also mo ately (Batty 2014, Hamadeb 2014		required to de
		2008 Fux 2005 Terra	2005 Kirchheiner 2004 Zineh 200	1 uan 14 Rau	termine whether
		2002 Wuttke 2002) Th	his concerns 4 of the 5 studies for	heart	CYP2D6 is
		rate reduction. 4 of the	5 studies for blood pressure reduc	ction, 2	associated with
		of the 3 studies for adve	erse events, 3 of the 4 studies for	brady-	clinical events in
		cardia (< 60 bpm), and	6 of the 8 studies for metoprolol d	aily	patients treated
		dose.	- -		with metoprolol,
		Meta-analyses were pe	rformed with a random-effects mo	del, but	as well as to
		prospective registration	of the protocol was not mentione	d. The	demonstrate the
		search and selection st	rategy was transparent and data e	extrac-	clinical utility of
		tion was standardised.		al	an individualized
		Quality of the included	studies and risk of blas was judge	a using	approach of pre-
		appropriateness of grou	in comparisons, baseline character	auon, aristice	scribing meto-
		Lappiopriateriess of glot	ap companisons, baseline chalacte	วาเอเเบอ,	protor using

ref. 3, continua-		patients' diseas	es and medications, dosing regimens and conco-	CYP2D6-infer-
tion		mitant medicati	ons, and genotype-phenotype translation. How-	red phenoty-
		ever, the result	s were not reported and studies were not excluded	pes'
		based on these	results.	
		Publication bias	s was not analysed.	
		Decultor		
		Results for PM	A compared to non PM:	
		resting heart	mean difference (MD) = $3.16(95\% \text{ Cl} \cdot 0.94)$	
		rate reduc-	5 37 (S)	
		tion	The result was also significant for the titrated-	
			dose studies in patients only: $MD = 3.1 (95\% Cl)$	
			0.1-6.1) (S).	
			Pairwise comparison with NM showed a signifi-	
	PM: A		cant difference for PM (S), but not for IM and	
			UM (NS).	
		systolic	mean difference (MD) = 2.88 (95% CI: 1.47-	
		blood	4.29) (S)	
		pressure	I he result was also significant for the titrated-	
		reduction	(S) (S) (2000) (100) (2000)	
			CO: Pairwise comparison with NM showed a signifi-	
			cant difference for PM (MD = 4.15 (95% CI:	
			0.18-8.12) (S)), but not for IM and UM (NS).	
			Only a trend (p = 0.093) was found for PM	
			compared to non-PM if the meta-analysis was	
			performed with the DerSimonian-Laird method	
			instead of the Hartung-Knapp method.	
		diastolic	mean difference (MD) = 2.93 (95% CI: 1.53-	
		DIOOQ	4.32) (5) The result was also significant for the titrated	
		reduction	dose studies only: MD = $2.5 (95\% \text{ Cl} \cdot 0.7-4.3)$	
		requestori	(S).	
	18.4. 0		Pairwise comparison with NM showed a signifi-	
			cant difference for PM and IM (S), but not for	
			UM (NS).	
		adverse	NS for the OR	
		events	31% of the non-PM had an adverse event.	
			Pairwise comparison with NM also showed no	
		bradycardia	Significant difference for PM and IM (NS). OP = 3.70 (05% CI: 1.12, 12, 50) (S)	
		(< 60 hpm)	32% of the non-PM and 55% of the PM had	
		(**********	bradycardia (< 60 bpm).	
			The effect was more important in the 2 smaller	
			studies (with 24 and 88 patients, respectively),	
			as opposed to the 2 larger studies (with 218 and	
			313 patients, respectively).	
			Pairwise comparison with NM showed a signifi-	
			cant difference for IM ($OR = 1.61$ (95% CI: 1.04-	
		metoprolol	NS for the mean difference (MD)	
		daily dose	Pairwise comparison showed all phenotypes to	
			have similar doses (NS).	
		Heterogeneity	between the studies was high and significant for	
		the following e	endpoint:	
		- bradycardia	(< 60 bpm)	
		11-4		
		Heterogeneity	between the studies was low and not significant	
		- daily metons	iy enapoint. olol dose	
		Heterogeneitv	between the studies was absent for the following	
		endpoints:		
		- heart rate re	duction	
		- blood pressu	ire reduction	

		- adverse events					
ref. 4 Chen L et al. The association of ADRB1 and CYP2D6 poly- morphisms with antihypertensive effects and analysis of their contribution to hypertension risk. Am J Med Sci 2018;355:235-9. PMID: 29549925.	4 IM: AA	261 patients with essential hypertension were treated with metoprolol (25 mg direct release metoprolol twice a day or 40.5 mg sustained release metoprolol tartrate once a day) for 12 weeks. Comedication with effect on metoprolol treatment and comorbidity owing to liver or kidney disease was excluded. Genotyping: - 40x *1/*1 - 116x *1/*10 - 105x *10/*10 Results: Results for *10/*10 versus *1/*10 versus *10/*10: blood pressure changes NS					Authors' conclu- sion: 'The effects of CYP2D6 poly- morphism on responses to metoprolol were not statistically significant in our study.'
		Note: Gen	otyping w	as performed for *	10. This is the mos	st	
ref. 5 Gao X et al. Impact of CYP- 2D6 and ADRB1 polymorphisms on heart rate of post-PCI patients treated with metoprolol. Pharmacogeno- mics 2017 Nov 2 (online ahead of print). PMID: 29095089.	3	Percutane patients tr day (9 pat 23.75 mg heart rate The target Comedica such as ar rone, digo but CYP2I 2D6 inhibi Genotypin - 61x *1/*1 - 151x *1/* - 107x *10 <u>Results:</u>	important gene variant in this Chinese population. Percutaneous coronary intervention was performed in 319 patients treated with sustained release metoprolol tartrate once a day (9 patients on a dose of 11.88 mg, 230 patients on a dose of 23.75 mg and 80 patients on a dose of 47.5 mg) and resting heart rate was measured at least 24h after taking metoprolol. The target heart rate was defined as < 70 bpm. Comedication with drugs affecting the cardiac conduction system such as antidepressants, calcium channel antagonists, amioda- rone, digoxin, ivabradine or other beta-blockers was excluded, but CYP2D6 inhibitors were not. Neither was adjusted for CYP- 2D6 inhibitors in multivariate logistic regression analysis. Genotyping: - 61x *1/*1 - 151x *1/*10 - 107x *10/*10				
		Results f	or *10/*10) versus *1/*10 vers	sus *1/*1:		
				*10/*10	*1/*10	value for *1/*1	
	IM: AA#	Resting I doses	heart rate dose 11.88 mg 23.75 mg	x 2.9S for *10/*10 vers*1/*1OR = 7.2 (95%CI: 3.5-14.7)(S) comparedto *1/*1 in multi- variate logistic regression analysis.in patients using dx 0.92S compared to *1/*1 x 0.92S compared to *1/*1	I X 1.5 sus *1/*10 versus NS compared to *1/*1 in multi- variate logistic regression analysis. ifferent daily metop X 1.00 NS compared to *1/*1 X 0.99 NS compared	24.0% prolol 75.0 bpm 72.0 bpm	
			47.5	x 0.84	to *1/*1 x 0.94	77.8	
				\$ compared to *1/*1 \$ for *10/*10 vers	to *1/*1 sus *1/*10 versus		
				There was no sid	nificant interac-		-
1							1

ref. 5, continua-				tion between CY	P2D6 and meto-		
				the CYP2D6 effe	ct was dose		
				independent.			-
		Note: Gen	otvnina w	as performed for *	10 This is the mos	t impor-	
		tant gene	variant in	this Chinese popul	ation.	in the second	
ref. 6	3	218 patien	ts with un	complicated hyper	tension received n	netopro-	Authors' conclu-
al.		wed by titr	ation to 1	00 mg 2x per dav b	ased on response	e).	Other than a
Impact of CYP-		Chronic us	e of med	ication with possibl	e effect on blood p	pressure	significant diffe-
2D6 polymor-		was exclue	ded, but u	se of CYP2D6 inhi	bitors was not. Pa	tients cker	rence in heart
cal efficacy and		were exclu	ided.			cker,	CYP2D6 poly-
tolerability of							morphisms were
metoprolol		Genotypin	g: + aene d	ose 1 or 0 75 (121	x NM 63x dene da	nse 1 or	not a determi-
Clin Pharmacol		0.75)	· gene u		x run, oox gene at		ability in respon-
Ther		- 15x IM (g	jene dose	e 0.5 or 0.25)			se or tolerability
2014;96:175-81. PubMed PMID [.]		- 11x PM - 8x UM +	aene dos	e 2 25 (7x UM_1x)	gene dose 2 25)		to metoprolol.
24637943.		on one	gene dee		gono doco 2.20)		In this well-
		Results:					powered, care-
		(-11.4 be	e in the ne ats/minute	e)	I + gene dose 0.75)- 1	study, there is
		РМ	-	ÎM	UM + gene dose	2.25	no evidence for
	ΡΜ·Δ	x 1.46	trand and	x 1.63	x 0.98	aa 1	the clinical utility
	IM: A	CYP2D6	denotype	was one of the mo	ost important predi	ctors	genotyping to
	UM: A	of the var	iability in	heart rate respons	e (S).		guide metoprolol
		Incidence	ofolinios	hradvaardia (raat	ing boort rate <60	haata/	therapy.
		minute) v	ersus NN	1 + gene dose 0.75	-1 (25% of the pati	ients)	
		NS for the	e trend		х		
		Incidence	e of symp	tomatic bradycardia	a versus NM + der	ie.	
		dose 0.7	5-1 (1.6%	of the patients, n =	= 3)		
		PM		IM	UM + gene dose	2.25	
		X 5.6 (n=	1) ficance no	x 0 (n=0)	x 0 (n=0)		
		PM versu	IS IM vers	sus (NM + gene dos	se 0.75-1) versus ((UM +	
		gene dos	e 2.25):				
		- reductio	n in systc	lic blood pressure	(NS)		
		- reductio	n in diast	olic blood pressure	(NS)		
		- dally do	se (NS) nce of sid	e effects (NS)			
		N.B.: Geno	otyping wa	as performed for *2	2 to *4, *6, *10, *17	', *41	
ref. 7	4	313 patien	ts with he	n. eart failure (NYHA I	I-IV), left ventricula	ar ejec-	Authors' conclu-
Batty JA et al.		tion fractio	n ≤ 0.4 ar	nd treated with opti	mum standard trea	atment	sion:
An investigation		received n	etoprolol	controlled release	1x daily for an ave	erage of	'Plasma meto-
genotype and		failure, the	patient w	as started on a do	se of 12.5 or 25 m	g/day,	trations were
response to		after which	the dose	was increased for	tnightly to a target	value of	2.1-/4.6-fold
metoprolol		200 mg/da	iy. CYP2E skor activi	06 inhibitors/substr ty were excluded	ates and other me	dicines	greater in the
dose titration in				ty were excluded.			as compared
patients with		Genotypin	g:				with the NM
heart failure: a		- 189x NM - 112∨ ™					group. Metopro-
substudy.		- 12x PM					nificantly lower
Clin Pharmacol		_					heart rates and
liher	1	Results:					I diastolic blood

2014;95:321-30.		Decrease in the	heart rat	e versus	NM at vario	ous tin	nes after	pressures
PubMed PMID:		the start of meto	prolol			-		during early
24193112.		Time point	IM	P	M	Dec	crease for	titration, indica-
						NM	(in	ting a CYP2D6
ref. 7, continua-						bea	its/minute)	*4 allele dose-
tion		2 weeks	NS	N	S	-5.0)	response effect.
		4 weeks	x 1.33	(S) x	1.52 (S)	-7.9)	These effects
		6 weeks	x 1.36	(S) x	1.51 (S)	-9.7	7	were not obser-
		8 weeks	x 1.14	(S) x	1.25 (S)	-13	.7	ved at maximal
		3 months	NS	Ň	S	-15	.9	dose, sugges-
		6 months	NS	N	S	-16	.4	ting a saturable
		first measure-	x 1 16	(S) x	1 32 (S)	-21	4	effect. Genotype
		ment after	×	(0)		(= -	25.9%)	did not adverse-
		achieving				`	2010/0)	ly affect surro-
		maximum dose						gate treatment
		8 weeks per	v 1 31	v	1.46	0 1	3 heats	efficacy.'
		o weeks, per	X 1.51	^	1.40	-0.	minuto por	
			S for the	ne trend		per	minute per	
		The suith and in di	4 4			nig		
		The authors indic			ippearance	orar	iy dilleren-	
		ce after eight we	eks was	probably	caused by	satur	ation of the	
		β-blockade at hig	gher dos	es. Howe	ver, there is	s a di	ference in	
		the first measure	ment aft	er achiev	ing the max	ximun	n dose.	
		Furthermore, the	heart ra	te reducti	ion is great	er at t	his time	
		than with prolong	ged use	of the ma	ximum dos	e.		
		Risk of bradycard	dia (≤ 60) beats/mi	nute) versu	is NM	(37.6% of	
		the patients)						
		IM			PM			
	IM: A	OR = 1.72 (95%	CI: 1.07	-2.76) (S)	NS			
		,						
		Decrease in the	diastolic	blood pre	essure vers	us NN	/ at various	
		times after the st	art of me	etoprolol				
		Time point	IM		PM		Decrease	
			1101		1 101		for NM (in	
							mm Ha)	
		2 weeks	NS		x 2 68 (9	3)	-2.8	
		2 weeks	v 1	56 (8)	× 2.00 (0) 2)	-2.0	
		4 weeks		.30 (3))	-0.2	
		0 weeks					-3.0	
		o weeks	0 110	05 (0)		.	-5.5	
		3 months	X 2	.25 (S)	X 3.21 (8	5)	-2.8	
		6 months	NS		NS		-2.8	
		first measuremen	nt x 1	.17 (S)	x 1.46 (S	5)	-11.4	
		after achieving					(=	
		maximum dose					-14.4%)	
								.
		PM versus NM a	nd IM ve	ersus NM:				
		no difference in:						
		- reduction in sys	stolic blo	od pressu	ıre (NS)			
		- the risk of prem	ature di	scontinua	tion of meto	oprolo	ol (NS)	
		- the risk of death	n and ho	spital adn	nission (NS	5)		
		- the risk of a sid	e effect	or disease	e symptom	(NS)		
		- the dose of met	toprolol a	at any tim	e point (NS	5)		
		- the percentage	of patie	nts that ad	chieved the	, targe	et dose of	
		200 mg/day (N	S) ်			Ŭ		
		- the percentage	/ IM and	PM in the	group that	tolera	ated a dose	
		of \geq 100 mg/da	v and in	the arour	that tolera	ited a	dose <100	
		mg/dav (NS: da	ata from	a previou	s study)			
		Median plasma a	oncentr	ation ^b of C	S-metoprol	n afta	r 3 months	
						Ji aile		Median C _{ss} S-
				ים	M			metoprolol
					VI 1 5			versus NM:
	PM: A	S for the trand		X	4.0			PM: 450%
		S IOI the trend.						IM: 210%
			was nor	formed for	r *1 Simila	r reeu	lte wore	

ref. 7, continua-		found if patients were categorised as NM, IM and PM based on	
tion	1	the plasma concentration of S-metoprolol.	Authors' conclu
Rau T et al	+	hypertension, dose of metoprolol retard based on clinical effect	sion:
Impact of the CYP2D6 geno- type on the clini- cal effects of		and double blind for genotype, over a period of 90 days. Screened for *3, *4, *5, *6, *10, *41 and duplication. Co-medica- tion: no CYP2D6 inhibitors and no differences between PMs and NMs+IMs.	'Metoprolol evoked signifi- cantly and per- sistently greater
prospective longitudinal study. Clin Pharmacol Ther 2009;85:269-72.	PM: A PM: AA#	 PM versus NM+IM: increase in the median C_{ss} from 14.2 to 69.6 ng/mL (S by 390%). no difference in initial dose of metoprolol (median 47.5 mg/day). less frequent dose increase during the study (6% versus 20% of the patients, S). increase in the reduction of HR from 9.1 to 14.9 beats/min (S by 64%). increase in the percentage of patients with bradycardia in all ECGs (4, 14 and 90 days after start of metoprolol) from 8% to 59% (RR = 7; 95% CI 2.9-16.4). no difference in the reduction of SBP (NS). increase in the reduction of DBP from 3.6 to 10.3 mmHg (S by 186%). increase in the reduction of the arterial blood pressure from 5.2 to 11.1 mmHg (S by 113%). the percentage of patients that achieved the target value for blood pressure (135/85 mmHg) during the treatment increased from 28% to 58% (S by 107%). no significant increase in the percentage of patients with one or more side effects (NS). 	heart rate, diastolic blood pressure, and mean arterial pressure in PMs than in non- PMs.'
	IM: A	 PM versus IM versus NM: mean C_{ss}: 85.5 versus 36.6 versus 15.3 ng/mL (S). decrease in HR: 14.9 versus 10.7 versus 8.9 beats/min (S for the trend). decrease in DBP: 10.23 versus 4.7 versus 3.5 mmHg (S for the trend). 	C₅s versus NM: PM: 559% IM: 239%
ref. 9 Bijl MJ et al. Genetic variation in the CYP2D6 gene is associa- ted with a lower heart rate and blood pressure in beta-blocker users. Clin Pharmacol Ther 2009;85:45- 50.	PM: A	 Heart rate was determined in 740 users of metoprolol (451x *1/*1, 255x *1/*4 and 34x *4/*4) and DBP in 809 users (496x *1/*1, 276x *1/*4 and 37x *4/*4). Screening was performed for the most common variant allele: *4. Co-medication with CYP2D6 inhibitors was not excluded, but sporadic. PM versus NM: HR is 8.5 beats/min lower (S; 95% CI 4.3-12.8). This was 7.1 beats/min after exclusion of 56 people with atrial fibrillation (S). reduction in the dose by CYP2D6-metabolised β-blockers (of which 88% metoprolol) from 0.48 to 0.38 standard daily doses (S by 21%). increased risk of bradycardia: OR = 3.86 (S; 95% CI 1.68-8.86). The OR was 2.94 after exclusion of 56 people with atrial fibrillation (S). HR reduction in people who started metoprolol (n=12) is 7.3 beats/min greater (S; 95% CI 1.2-13.4). no significant difference in change of blood pressure after discontinuation of metoprolol (n=7) (NS). DBP is 4.8 mmHg lower (S; 95% CI 0.1-9.4). DBP reduction in people who started metoprolol (n=14) is non-significantly greater (NS). 	Authors' conclu- sion: 'In CYP2D6*4/*4 PMs, the adjust- ted heart rate in metoprolol users was 8.5 beats/ min lower com- pared with *1/*1 NMs, leading to an increased risk of bradycar- dia in PMs.'

			Γ
ref. 9, continua-		2.3 beats/min after exclusion of 56 people with atrial fibrilla-	
tion		tion (S).	
	IM: AA	- no increase in the risk of bradycardia (NS).	
		- HR reduction in people who started metoproiol $(n=72)$ is non-	
		significantly greater (NS).	
		- no significant difference in change of blood pressure after	
		no difference in SEP (NS)	
		no difference in DBP (NS)	
		The authors concluded that dose adjustment based on antihyper-	
		tensive effect is not performed correctly in practice, as PMs had a	
		lower HR and higher risk of bradycardia after dose adjustment.	
		Co-administration of CYP2D6 inhibitors did not influence the	
		results.	
ref. 10	4	181 patients with recent acute myocardial infarction, 3x PM	Authors' conclu-
Goryachkina K et		(*4/*4), 58x IM (50x *1/*4, 4x *4/*10, 2x *1/*3, 1x *10/*10, 1x	sion:
al.		*3/*10), 113x NM (110x *1/*1, 3x *1/*10), 7x UM, screened for *3,	'Metoprolol
CYP2D6 is a		*4, *10 and gene duplication, of which 141 were using metoprolol	disposition and
major determi-		(90% immediate release; 10% retard), dose of metoprolol based	effects are
nant of metopro-		on clinical effect (mean 0.6 mg/kg in PM and 0.9 mg/kg in the	mainly control-
iol disposition		other phenotypes (NS)), no CYP2D6 inhibitors as comedication.	led by CYP2D6
and ellects in		Pharmacokinetics were determined in 110 patients (2X PM, 32X	genotype.
Russian patients		henotypically DM) was not included in the analysis	dene duplication
treated for acute		phenotypically PM) was not included in the analysis.	are at high risk
myocardial		PM versus IM versus NM versus LIM:	of not benefiting
infarction.		- HR upon discharge (15-20 days after admission): 53 versus	from treatment
Eur J Clin Phar-		61 versus 62 versus 69 beats/min (S).	due to lower
macol		- median AUC ^b metoprolol: 5185 versus 905 versus 559	metoprolol
2008;64:1163-		versus 336 nM.h.kg/mg (S).	concentrations.
73.	IM: A	- median MR AUC metoprolol/HM: 1031 versus 1.3 versus 0.5	Higher CYP2D6
		versus 0.4 (S).	activity seems to
		- median trough concentration metoprolol ^b : 222 versus 33	be associated
		versus 11 versus 18 nM/mg per kg (S). The trough	with VRDs com-
		concentration could only be measured in IM and PM and was	plicating AMI,
		estimated in NM and UM.	being a negative
		min (S)	for patients'
		median ALIEC (in relation to HR): no significant increase with	survival '
		the gene dose (NS)	Survival.
		PM:	AUC ^b versus
	PM: A	- most pronounced bradycardia upon discharge from the	NM:
		hospital.	PM: 928%
			IM: 162%
		UM:	UM: 60%
		- almost no therapeutic effect achieved. HR decreased from	
		average 78 to 69 beats/min after start metoprolol.	
		- increased prevalence in group with disruptions to the ventri-	
	UM: D	cular rhythm (n=23) (from 2% to 22%; S by 1000%). This	
		causes an increase in the median number of active CYP2D6	
		concentration does not differ significantly between both	
		aroups	
		gioupo.	
		The authors indicate that a significant number of patients did not	
		achieve effective concentrations of metoprolol (30-500 nM) and	
		that underdosage appeared to have occurred in this study.	
ref. 11	3	276 patients with essential hypertension, screened for *2, *5 and	Authors' conclu-
Yuan H et al.		*10, patients randomised to metoprolol dose 100 mg/day for all	sion:
Effects of poly-		phenotypes (60x PM+IM (1x *5/*5, 3x *5/*10, 56x *10/*10), 43x	'The same dose
morphism of the		IM+NM (10x *1/*5, 18x *1/*10, 15x *2/*10)), 40x NM (21x *1/*1,	of metoprolol
beta(1) adreno-		17x *1/*2, 2x *2/*2)) or 25 mg/day for PM+IM, 50 mg/day for	achieved differ-
receptor and		IM+NM and 100 mg/day for NM (68x PM+IM (2x *5/*5, 6x *5/*10,	rent therapeutic
CYP2D6 on the		60x *10/*10), 27x IM+NM (5x *1/*5, 14x *1/*10, 8x *2/*10), 38x	ettects in

therapeutic effects of meto-		NM (20x *1/*1, 16x *1/*2, 2x *2/*2)), for 8 weeks, CYP2D6 inhibitors were not excluded.	patients with different CYP-
proiol.		PM+IM versus NM	2D6 and B1
2008:36:1354-		Genotype-independent dose:	polymorphisms '
62.		 increase in the reduction of SBP from 5.1 to 11.4 mmHg (S by 124%) 	polymorphicino.
ref. 11, continu- ation		 increase in the reduction of DBP from 4.4 to 8.9 mmHg (S by 102%). 	
	PM+IM: AA	- no significant increase in the prevalence of effective blood pressure reduction (NS).	
		Genotype-dependent dose:	
		 no significant differences in reduction in SBP, DBP and prevalence of effective blood pressure reduction (NS). 	
		IM+NM versus NM:	
		- increase in the reduction of SBP from 5.1 to 12.9 mmHg (S	
		 by 153%). no significant increase in the decrease in DBP (NS). 	
		 no significant increase in the prevalence of effective blood pressure reduction (NS). 	
		Genotype-dependent dose:	
		prevalence of effective blood pressure reduction (NS).	
ref. 12	3	18 healthy study subjects, 6x *1/*1, 7x *1/*10, 5x *10/*10,	
Jin SK et al. Influence of		screened for *5 and *10, single dose of 100 mg metoprolol, no co-medication;	
CYP2D6*10 on		*10/*10 vorous *1/*1	
kinetics of meto-	IM· A	ALC increased from 443 7 to 2545 3 ng h/mL (S by 474%)	
prolol in healthy		- $t_{1/2}$ increased from 2.7 to 5.0 hours (S by 85%).	
Korean volun-		- increased concentration ratio metoprolol/HM (S).	
teers.			
J Clin Pharm		*1/*10 versus *1/*1:	
1 her		- no significant increase in AUC and $t_{1/2}$ (NS).	
2000,33.307-73.		*10/*10 versus NM (*1/*1 + *1/*10)·	NM [.]
		- AUC increased from 740.9 to 2545.3 ng.h/mL (S by 244%).	IM: 344%
		N.B.: *10 and *5 are the most common alleles in the Asian population.	
ref. 13	3	Enantiomer-selective analysis of the blood samples by Kirchhei-	Authors' conclu-
Seeringer A et al.		ner, 2004. 29 healthy study subjects. 4x PM (gene dose 0), 13x NM (8x	SION: 'A slight enantio-
pharmacokinetics		gene dose 2. 5x gene dose 1.5 or 1.25). 12x UM (8x gene dose	preference to-
of metoprolol in		3, 4x gene dose 2.5 or 2.25), screened for *2, *3, *4, *5, *6, *9,	, wards metabo-
CYP2D6 ultra-		*10, *35, *41 and gene duplication, single dose of 100 mg	lism of R-meto-
rapid metaboli-		metoprolol, no co-medication;	prolol by CYP-
tion with exer-		PM versus NM [.]	ved in NMs and
cise-induced		- AUC S-metoprolol increased from 365.9 to 1803.7 ng.h/mL	even more in
heart rate.		(S for the trend gene dose, by 393%).	the UM group,
Eur J Clin Phar-		- AUC R-metoprolol increased from 261.1 to 1746 ng.h/mL (S	but the effect
macol		for the trend gene dose, by 569%).	was far from
2000,04.003-8.		trend PM, NM, UM: by 3.3%	lective Since S-
		- increase in concentration required for half-maximum reduc-	metoprolol is the
		tion of exertion HR: S-metoprolol from 17 to 21 ng/mL (NS by	main active
		23%); R-metoprolol from 11 to 20 ng/mL (NS by 82%).	beta-blocking
		- concentrations in PM close to concentrations that yield maxi-	enantiomer,
		the dose-effect curve	rapid and ultra-
			metabolizers
		UM versus NM:	might profit from
	UM: A	- AUC S-metoprolol decreased from 365.9 to 189.8 ng.h/mL (S	the enantiopre-

	 by 48%). AUC R-metoprolol decreased from 261.1 to 126.8 ng.h/mL (S by 51%). increase in the AUC ratio S-M/<i>R</i>-M from 1.5 to 1.6 (S for the trend PM, NM, UM; by 6.7%). decrease in concentration required for half-maximum reduction of exertion HR: S-metoprolol from 17 to 11 ng/mL (NS by 35%); R-metoprolol from 11 to 7 ng/mL (NS by 36%). Due to the very strong correlation between the concentrations of <i>S</i>-M and <i>R</i>-M, it was not possible to perform a separate analysis of the β-blocking properties of both enantiomers. 	ference of CYP- 2D6 to metabo- lize the less active R-meto- prolol, and indeed have a better concen- tration-response relationship, which then diminishes the loss of effect caused by rapid and ultra-rapid metabolism of metoprolol.'
		PM: 493% UM: 52%
4 PM: AA IM: AA UM: A	 91 patients with cardiovascular disease, 58x NM (17x *1/*1, 41x *1/*10), 29x IM (14x *10/*10, 3x *9/*10, 3x *1/*4, 1x *1/*5, 3x *4/*10, 5x *5/*10), 1x PM (*4/*4), 3x UM (2x *1/*1xn, 1x *1/*10xn), screened for *3, *4, *5, *8, *9, *10, *17 and duplication, dose of metoprolol based on clinical effect (50-400 mg/day; average 1.9 mg/kg), no CYPD6 inhibitors as co-medication. *10/*10 versus *1/*1: increase in plasma concentration after 4 hours from 0.93 to 1.23 ng/mL per mg (NS by 32%). decrease in Cl_{or} from 58.7 to 46.5 L/h (NS by 21%). PM versus NM: increase in plasma concentration after 4 hours from 1.18 to 3.57 ng/mL per mg (NS by 203%). increase in logarithm (concentration ratio metoprolol/HM) from -0.13 to 1.58 (NS). IM versus NM: increase in plasma concentration after 4 hours from 1.18 to 1.24 ng/mL per mg (NS by 5%). increase in plasma concentration after 4 hours from 1.18 to 0.35 ng/mL per mg (NS by 5%). decrease in plasma concentration ratio metoprolol/HM) from -0.13 to 0.15 (NS). UM versus NM: decrease in plasma concentration after 4 hours from 1.18 to 1.24 ng/mL per mg (NS by 5%). increase in logarithm (concentration ratio metoprolol/HM) from -0.13 to 0.15 (NS). UM versus NM: decrease in plasma concentration after 4 hours from 1.18 to 0.35 ng/mL per mg (NS by 70%). decrease in plasma concentration ratio metoprolol/HM) from -0.13 to 0.39 (S). 	plasma concen- tration after 4 hours versus NM: PM: 303% IM: 105% UM: 30%
PM: A IM: A	 b) patients with heart failure, of which 51 were CYP2D6-geno-typed, 4x PM, 10x IM (no fully functional allele, at least 1 reduced functional allele), 37x NM (at least 1 fully functional allele), screened for *2, *3, *4, *6, *9, *10, *17, *29 and *41 alleles, meto-prolol retard initial dose 12.5-25 mg/day titrated up to max. 200 mg/day or tolerable dose, no CYP2D6 inhibitors as co-medication; <i>kinetic endpoint</i> PM: increase in C_{ss} S-metoprolol from 14.93 to 53.09 ng/mL versus NM (S by 256%). IM: increase in C_{ss} S-metoprolol from 14.93 to 22.90 ng/mL versus NM (S by 48%). 	Authors' conclu- sion: 'Thuswe do not have any evidence that S- metoprolol concentration contributes importantly to the tolerability of metoprolol.' Css S-metoprolol versus NM: PM: 356%
	4 PM: AA IM: AA UM: A 4 PM: A IM: A	 by 48%). AUC R-metoprolol decreased from 261.1 to 126.8 ng.h/mL (S by 51%). increase in the AUC ratio S-M/R-M from 1.5 to 1.6 (S for the trend PM, NM, UM, by 6.7%). decrease in concentration required for half-maximum reduction of exertion HR: S-metoprolol from 17 to 11 ng/mL (NS by 35%); R-metoprolol from 11 to 7 ng/mL (NS by 35%); R-metoprolol from 11 to 7 ng/mL (NS by 35%); R-metoprolol from 11 to 7 ng/mL (NS by 35%); R-metoprolol between the concentrations of S-M and R-M, it was not possible to perform a separate analysis of the β-blocking properties of both enantiomers. 4 91 patients with cardiovascular disease, 58x NM (17x *1/*1, 41x *1/*10), 29x IM (14x *10/*10, 3x *9/*10, 3x *1/*4, 1x *1/*5, 3x *4/*10, 5x *5/*10), 1x PM (*4/*4), 3x UM (2x *1/*1xn, 1x *1/*10), 5x *5/*10), 1x PM (*4/*4), 3x UM (2x *1/*1xn, 1x *1/*10), so see of netoprolol based on clinical effect (50-400 mg/day; average 1.9 mg/kg), no CYPD6 inhibitors as co-medication. *10/*10 versus *1/*1: increase in plasma concentration after 4 hours from 0.93 to 1.23 ng/mL per ng (NS by 32%). decrease in logarithm (concentration ratio metoprolol/HM) from -0.13 to 1.58 (NS). PM versus NM: increase in plasma concentration after 4 hours from 1.18 to 3.57 ng/mL per ng (NS by 203%). increase in plasma concentration after 4 hours from 1.18 to 1.24 ng/mL per ng (NS by 5%). increase in plasma concentration after 4 hours from 1.18 to 1.24 ng/mL per ng (NS by 5%). increase in logarithm (concentration ratio metoprolol/HM) from -0.13 to 0.15 (NS). UM versus NM: decrease in plasma concentration after 4 hours from 1.18 to 0.35 ng/mL per mg (NS by 5%). increase in logarithm (concentration ratio metoprolol/HM) from -0.13 to 0.15 (NS). UM versus NM: decrease in plasma concentration ratio metoprolol/HM) from -0.13 to 0.15 (NS). <li< td=""></li<>

		tion differed non-significantly between the three phenotypes.	
ref. 16 Nozawa T et al. Influence of CYP2D6 geno- type on meto- prolol plasma concentration and beta-adre- nergic inhibition during long-term treatment: a comparison with bisoprolol. J Cardiovasc Pharmacol 2005;46:713-20.	4 IM: A	 72 patients (ischaemic heart disease, hypertension and atrial fibrillation) of which 38 metoprolol, 8x *10/*10, 17x *1/*10 of *2/*10, 13x no *10 (*1/*1, *1/*2 or *2/*2), dose of metoprolol based on clinical effect, 39-96 mg/day, no CYP2D6 inhibitors as co-medication; <i>kinetic endpoint</i> *10/*10: increase in peak and trough concentrations versus 1x*10 and versus no *10 (both S). Increase in trough concentrations versus NM (1x*10 + no *10) from 14.2 to 45.5 ng/mL (S by 221%). 1x *10: increase in peak and trough concentrations versus no *10 (NS by 51% and 25% respectively). <i>clinical endpoints</i> *10/*10: change in HR following administration of β-agonist at the moment of trough concentration is significantly reduced versus no *10 and 1x *10. HR at peak concentration, SBP, DBP and dose of metoprolol differed non-significantly. 	C _{ss} versus NM: IM: 321%
ref. 17 Fux R et al. Impact of CYP- 2D6 genotype on adverse effects during treatment with metoprolol: a prospective clinical study. Clin Pharmacol Ther 2005;78:378-87.	4 PM: A IM: A UM: A	 N.B.: not measured enantioselectively. 121 patients, of which 90% with hypertension, 4x PM (0-0), 21x IM (0.5-0.5 or 0.5-0), 91x NM+IM (1-0, 1-0.5, 1-1) and 5x UM (duplication 1), with allele activity 1 = *1 or *2, 0.5 = *9, *10 or *41 and 0 = *3, *4, *5, *6, *7 or *8, dose of metoprolol based on clinical effect, no CYP2D6 inhibitors as co-medication; <i>kinetic endpoint</i> PM: Css^a increased from 0.047 to 1.34 ng/mL/mg versus NM+IM (S by 2762%). IM: Css^a increased from 0.047 to 0.34 ng/mL/mg versus NM+IM (S by 587%). UM: Css^a decreased from 0.047 to 0.0088 ng/mL/mg versus NM+IM (S by 79%). <i>clinical endpoints</i> PM+IM: trend (NS) towards cold extremities being more common than in UM+NM, other side effects such as head- ache, dizziness, sleeping problems and fatigue were non- significantly more common. Sexual dysfunction was signifi- cantly less common than for UM+NM. SBP and DBP differed non-significantly from UM+NM. N.B.: not measured enantioselectively. 	Authors' conclu- sion: 'CYP2D6 geno- type-derived phenotype was not significantly associated with a propensity for adverse effects to develop during treatment with metoprolol. However, the results concer- ning tolerability of metopolol in PMs were inconclusive because of the small number of PMs enrolled.' C _{ss} ^a versus NM+IM: PM: 2862% IM: 687% UM: 21%
ret. 18 Zineh I et al. Pharmacokine- tics and CYP2D6 genotypes do not predict meto- prolol adverse events or efficacy in hypertension. Clin Pharmacol Ther 2004;76:536-44.	PM: A IM: A	 50 patients with hypertension, 42x NM (24x high activity ≥1.75, 8x middle-high activity =1.5, 10x low activity 1-1.25) 4x IM (activity 0.5-0.75) and 4x PM (activity 0) (activity score is the sum of activity per allele, activity for *1 and *2 is 1, for *9, *29, *41, *45 and *46 is 0.75, for *10 and *17 is 0.5 and for *3, *4, *5 and *6 is activity 0), dose of metoprolol based on effect and adverse events, max. 400 mg/day, co-medication included CYP2D6 inhibitors (with 6x NM); <i>kinetic endpoints</i> PM: increase in AUC^a_{S-M} from 5.1 to 16.2 ng/mL/mg compared to NM high activity (S by 218%), t½ is 7.1 hours. Increase in AUC^a_{S-M} from 5.5 to 16.2 ng/mL/mg compared to NM (high and medium-high activity) (NS by 196%). IM (activity 0.5-0.75): increase in AUC^a_{S-M} from 5.1 to 7.9 ng/mL/mg versus NM high activity (S by 55%), t½ is 5.3 hours. 	Authors' conclu- sion: 'These data, therefore, provi- de no evidence for an associa- tion between variable phar- macokinetic drug exposure, adverse effects, or efficacy of metoprolol.'

ref. 18, continu- ation		 IM (activity 0.5-1): increase in AUC^a_{S-M} from 5.5 to 7.0 ng/mL/ mg compared to NM (high and medium-high activity) (NS by 29%). NM: AUC^a_{S-M} differed significantly between high, medium- high and low activity. <i>clinical endpoints</i> PM: A total of 75% experienced general side effects, 0% dose-limiting side effects (both differed non-significantly from NM). The number of responders (≥ 10% decrease in DBP, 50%) and the dose differed non-significantly from NM. The prevalence of PM in the responder group is 4% (differs non- significantly from the prevalence in the non-responder group). IM (activity 0.5-0.75): A total of 50% experienced general side effects, 25% dose-limiting side effects (both differed non- significantly from NM). NM: A total of 43% experienced general side effects, 14% dose-limiting side effects. 	AUC ^a S- metoprolol versus NM:. PM: 296% IM: 129%
ref. 19 Kirchheiner J et al. Impact of the ultrarapid meta- bolizer genotype of cytochrome P450 2D6 on metoprolol phar- macokinetics and pharmacodyna- mics. Clin Pharmacol Ther 2004;76:302-12.	3 PM: A UM: A	 IN.B.: registration of side effects by means of open Interviews 29 healthy study subjects, 4x PM (gene dose 0), 13x NM (8x gene dose 2, 5x gene dose 1.5 or 1.25), 12x UM (8x gene dose 3, 4x gene dose 2.5 or 2.25), screened for *3, *4, *5, *6, *9 and *10, single dose of 100 mg metoprolol, no co-medication; <i>kinetic endpoints</i> PM: increase in AUC from 595.6 to 3249.0 µg.h/L versus NM (S by 446%), 1½ is 7.6 hours. UM: decrease in AUC from 595.6 to 272.5 µg.h/L versus NM (S by 54%), 1½ is 2.8 hours. <i>clinical endpoints</i> PM: resting HR decreased by 21% more than for NM (S). Decrease in SBP and DBP and AUC for exertion HR differed non-significantly from NM. UM: resting HR decreased by 14.3% less than for NM (S). Decrease in SBP and DBP and AUC for exertion HR differed non-significantly from NM. N.B.: not measured enantio-selectively. 	Authors' conclu- sion: 'Pharmacodyna- mic differences between UMs and NMs were by far not as large as diffe- rences in pharmacokinetic parameters. Neither CYP 2D6 genotype nor metoprolol plasma concen- trations signifi- cantly correlated with blood pres- sure in the heal- thy volunteers.' AUC versus NM: PM: 546% UM: 46%
ref. 20 Taguchi M et al. Effect of CYP- 2D6*10 on phar- macokinetic vari- ability of routinely administered metoprolol in middle-aged and elderly Japanese patients. Eur J Clin Phar- macol 2003;59:385-8.	4 IM: A	 34 patients, 9x *1/*1, 5x *1/*2, 7x *1/*10, 6x *2/*10, 7x *10/*10, metoprolol 40-120 mg/day, no CYP2D6 inhibitors as co-medication; for *10/*10 the Cl_{or} is reduced by 60.4% compared to *1/*1 + *1/*2 and by 52.0% compared to *1/*10 + *2/*10 (both S). Cl_{or} is reduced by 57.0% compared to NM (*1/*1 + *1/*2 + *1/*10 + *2/*10) (S). N.B.: indication for metoprolol is not mentioned 	Cl _{or} versus NM: IM: 43.0%
ref. 21 Wuttke H et al. Increased frequency of cytochrome P450 2D6 poor meta- bolizers among	4	24 patients with specific (bradycardia, AV-block) and non-specific (nausea, dizziness, fatigue) severe, unexpected adverse events within 2 weeks after start of metoprolol, 9x PM (*3/*4, *4/*4, *4/*5, *4/*6 and *5/*5), 1x *41/*4, 2x *1/*4, 1x *1/*5, 1x *2/*3, 2x *2/*4, 4x *1/*41, 2x *1/*2 and 2x *1/*1, no CYP2D6 inhibitors as co-medication;	Authors' conclu- sion: 'An obvious clinical recom- mendation as a result of this and former studies is

patients with metoprolol-asso- ciated adverse effects. Clin Pharmacol Ther 2002;72:429-37. ref. 21, continu- ation	PM: C	The prevalence of the PM genotype was 38% within the group with side effects and is a factor 5 higher than in the general population.	the initiation of metoprolol at low doses to a- void overdosage in the 7% of poor metaboli- zers in the po- pulation or the use of a CYP- 2D6-indepen- dent β -blocker.'
ref. 22 Rau T et al. Effect of the CYP2D6 geno- type on metopro- lol metabolism persists during long-term treat- ment. Pharmacogene- tics 2002;12:465-72.	4 PM: A IM: A	 91 patients (hypertension, ischaemic heart disease, heart failure), 8x PM (0-0), 9x 0.5-0, 1x 0.5-0.5, 21x 1-0, 21x 1-0.5, 31x 1-1 (0 = *3, *4, *6, 0.5 = *9, *10, *41, 1 = *1, *2), 7 patients excluded due to co-medication or therapy non-compliance, dose of metoprolol retard based on clinical effect, mean 47.5 mg/day, no CYP2D6 inhibitors as co-medication; PM: increase in C_{ss}^b from 13.3 to 82.0 ng/mL versus 1-1 (S by 517%). Increase in C_{ss}^b from 14.2 to 82.0 ng/mL versus NM (1-1 + 1-0.5) (NS by 476%). 0.5-0 + 0.5-0.5: increase in C_{ss}^b from 13.3 to 51.8 ng/mL versus 1-1 (S by 290%). 1-0 + 1-0.5: increase in C_{ss}^b from 13.3 to 20.3 ng/mL versus 1-1 (NS by 53%). IM (0.5-0 + 0.5-0.5 + 1-0): increase in C_{ss}^b from 14.2 to 30.8 ng/mL versus NM (1-1 + 1-0.5) (NS by 116%). N.B.: not measured enantioselectively. 	Authors' conclu- sion: 'This study de- monstrated that the CYP2D6-ge- notype remains a major determi- nant of meto- prolol plasma concentrations during long-term therapy.' 'Yet, at present, neither the relative risks of the CYP2D6 genotype sub- groups nor the absolute fre- quency of ad- verse effects are known.' Css ^b versus NM: PM: 576%. IM: 216%
ref. 23 Huang JD et al. Pharmacokinetic s of metoprolol enantiomers in Chinese subjects of major CYP2D6 genotypes. Clin Pharmacol Ther 1999:65:402-7.	3 IM: A	 40 healthy study subjects, 6x *1/*1, 10x *1/*10, 12x *10/*10, single dose of 100 mg metoprolol, no co-medication; values for S-metoprolol *10/*10: increase in AUC from 1411 to 3588 nM.h versus *1/*1+*1/*2 (S by 154%), t½ is 5.2 hours, AUC ratio S-M/R-M is 1.26. Increase in AUC from 1620 to 3588 nM.h versus NM (*1/*1+*1/*2+*1/*10) (NS by 121%). *1/*10: increase in AUC from 1411 to 1899 nM.h versus *1/*1+*1/*2 (S by 35%), t½ is 4.1 hours, AUC ratio S-M/R-M is 1.46. 	AUC S-metopro- lol versus NM: IM: 221%
ref. 24 Koytchev R et al. Influence of the cytochrome P450 2D6*4 allele on the pharmacoki- netics of control- led-release meto- prolol. Eur J Clin Phar- macol 1998;54:469-74.	4 IM: A 4	 22 healthy study subjects, 6x *1/*4, 16x *1/*1, metoprolol retard 200 mg/day, no co-medication; <i>kinetic endpoints</i> *1/*4: increase in AUC compared to *1/*1 from 1820 to 4438 ng/mL.h (S by 144%), t½ is 7.2 hours. <i>clinical endpoints</i> *1/*4: decrease in the HR is 185.4% greater than for NM (S). The decrease for *1/*4 is 11.7 beats/minute. Change in SBP and DBP is greater but NS. N.B.: not measured enantio-selectively. 14 healthy subjects, 7x PM and 7x NM[#] (phenotyped using dextromethorphan) metoprolol 100 mg twice daily: 	AUC versus NM: IM: 244%
MA et al. Influence of CYP2D6-depen- dent metabolism		 <i>kinetic endpoints</i> PM: increase in C_{ss} from 36 to 185 ng/mL (S by 414%) versus NM and ratio S-/R-M is 1.23 and reduced by 30% (S). 	C _{ss} metoprolol versus NM+IM+UM:

on the steady- state pharmaco- kinetics and pharmacodyna- mics of metopro- lol and nicardi- pine, alone and in combination. Br J Clin Phar- macol 1993;36:531-8.	PM: B	 <i>clinical endpoints</i> PM: Resting HR, SBP and DBP differed non-significantly from NM. Decrease in exertion tachycardia was 40.4% greater (S), decrease in SBP with exertion was 185.7% greater (S) N.B.: genotype not known. Phenotyping can only distinguish between PM and the other phenotypes, so NM[#] is equal to NM+IM+UM. 	PM: 514%
ref. 26 Lewis RV et al. Influence of debrisoquine oxidation pheno- type on exercise tolerance and subjective fatigue after metoprolol and at-nolol in healthy subjects. Br J Clin Phar- macol 1991 ;31:391-8.	3 PM: AA	 12 healthy subjects, 3x PM and 9x NM[#] (phenotyped using debrisoquine), single dose of 50-100 mg metoprolol; PM: change in HR, fatigue score and exertion time differed non-significantly from NM. Fatigue score is not correlated to a decrease in HR or an increase in the exertion time. N.B.: genotype not known. Phenotyping can only distinguish between PM and the other phenotypes, so NM[#] is equal to IM, NM and UM. 	
ref. 27 Clark DWJ et al. Adverse effects from metoprolol are not generally associated with oxidation status. Br J Clin Phar- macol 1984;18:965- 966.	3 PM: AA	 74 patients, 37 discontinued metoprolol due to side effects (hypotension, dizziness, Raynaud's syndrome, lively dreams, etc.) and 37 controls who used metoprolol without reported side effects, phenotyped with sparteine, 4x PM and 33x NM[#] in each group, co-medication unknown; Number of PMs in group that discontinued is equal to number of PMs in control group. Dose of metoprolol is lower for PMs in group that discontinued than for PMs in control group and also lower than for NMs in group that discontinued (NS). Dose in discontinued group differed non-significantly from controls, 138 vs 150 mg/day. N.B.: genotype not known. Phenotyping can only distinguish between PM and the other phenotypes, so NM[#] is equal to IM, NM and UM. N.B.: indication for metoprolol is not known 	Authors' conclu- sion: 'This investiga- tion does not support the con- cept that prior knowledge of oxidiser status will enable a physician to pre- dict the possibili- ty of adverse drug reactions to metoprolol. However, it does not exclu- de that poor oxi- diser status may be important in relation to ad- verse drug reac- tions in an occa- sional subject.'
ref. 28 Lennard MS et al. Differential stereoselective metabolism of metoprolol in extensive and poor debrisoquin metabolizers. Clin Pharmacol Ther 1983;34:732-7.	3 PM: A	 12 study subjects (8 with hypertension), 6x PM and 6x NM[#] (phenotyped using debrisoquine), single dose of 200 mg metoprolol, no co-medication: PM: increase in AUC_{S-M} from 679 to 3431 ng/mL.h (NS by 405%) versus NM, ratio S-M/<i>R</i>-M is 0.90 and reduced by 34.3% compared to NM (both S). The variability in the stereoselective metabolism is related to the phenotype. N.B.: genotype not known. Phenotyping can only distinguish between PM and the other phenotypes, so NM[#] is equal to IM, NM and UM. 	AUC S-meto- prolol versus NM+IM+UM: PM: 505%
ref. 29 American SmPC Toprol-XL (meto- prolol succinate)	0	Pharmacogenomics: CYP2D6 is absent in about 8% of Caucasians (poor metaboli- zers) and about 2% of most other populations. CYP2D6 can be inhibited by several drugs. Poor metabolizers of CYP2D6 will	

01-06-22	Ρ Μ·Δ	have increased (several-fold) metoprolol blood levels, decreasing	
01-00-22.			
		metoprolol's cardioselectivity.	
ref. 29, continu-		Pharmacokinetics:	
ation		Metoprolol is metabolized predominantly by CYP2D6. In healthy	
		subjects with CYP2D6 normal metabolizer phenotype, coadmini-	
		stration of quinidine 100 mg a potent CYP2D6 inhibitor and	
		immediate release meteorolal 200 mg tripled the concentration of	
		infinediate-release metoproiol 200 mg tripled the concentration of	
		S-metoprolol and doubled the metoprolol elimination half-life. In	
		four patients with cardiovascular disease, coadministration of	
		propafenone 150 mg t.i.d. with immediate-release metoprolol 50	
		mg t.i.d. resulted in steady state concentration of metoprolol 2- to	
		5-fold what is seen with metoprolol alone. Normal metabolizers	
		who concomitantly use CYP2D6 inhibiting drugs will have increa-	
		sed (several-fold) metoprolol blood levels, decreasing metopro-	
		lol's cardioselectivity.	

^a corrected for dose

^b corrected for dose and body weight.

AA[#]: there was a significant effect, but this effect was positive instead of negative.

Risk group	IM with CYP2D6 inhibitor

Comments:

- Unless stated otherwise, the kinetic parameters relate to the racemic mixture of S-metoprolol and *R*-metoprolol.
- For the period after March 2009, clinical studies were only included if they involved more than 200 patients or if data for UM were also present. Kinetic studies were only included if AUC, C_{ss} or Cl_{or} was determined for metoprolol, if the study distinguished between NM and IM and if data were available for at least 3 UM, 6 PM or 25 IM. Other studies did not contribute sufficiently to the burden of proof. A meta-analysis of kinetic studies involving a total of 235 patients was not included (Blake CM et al. A meta-analysis of CYP2D6 metabolizer phenotype and metoprolol pharmacokinetics. Clin Pharmacol Ther. 2013;94:394-9. PMID: 23665868). For all 148 patients in the meta-analysis that were not included in this risk analysis, no distinction was made between NM and IM. The study of Thomas 2020 (Thomas CD et al. Examination of metoprolol pharmacokinetics and pharmacodynamics across CYP2D6 genotype-derived activity scores. CPT Pharmacometrics Syst Pharmacol 2020;9:678-85. PMID: 33067866) was not included in the risk analysis, because the pharmacokinetic study was small and the pharmacodynamic study analysed the same patients as Hamadeh 2014.

The less relevant studies were not included from the literature from 2006 onwards. These are studies in which the effect of the genotype is not the main subject (for example, interaction studies in which genotyping was also performed) and studies in which the ratio α -hydroxymetoprolol/metoprolol was the only endpoint.

Studies in which only phenotyping was performed and that did not provide any new findings/insights compared to studies in which genotyping was performed were not included in the risk analysis.

- KNMP Pharmacogenetics Working Group: The definition of bradycardia in the studies is far too vague, namely <60 beats/minute. A heart rate below 60 beats/minute is referred to as bradycardia, but this does not mean that any pathology or symptoms are present. In the case of treatment with a β-blocker, physicians aim to achieve bradycardia between 50 and 60 beats/minute (and at least substantially lower than the initial heart rate), because this gives them confirmation that the patient has pharmacologically active concentrations of the medicine and because a reduction in the heart rate forms an integral part of the intended effect (e.g. for angina pectoris or aortic dissection). In some cases (e.g. a patient with aortic dissection), physicians will even accept a heart rate below 50 beats/minute, provided that the patient is not experiencing any symptoms that could be related to this bradycardia (e.g. dizziness). Severe cardiac events were registered in only 1 study.</p>
- Other guidelines:
 - Rüdesheim S et al. Physiologically based pharmacokinetic modeling of metoprolol enantiomers and α-hydroxymetoprolol to describe CYP2D6 drug-gene interactions. Pharmaceutics 2020;12:1200. PMID: 33322314.
 The authors developed a physiologically based pharmacokinetic (PBPK) model employing data of 48 different clinical studies with a dosing range of 5-200 mg and with a total of 461 participants, of whom 275 with a known CYP2D6 genotype or phenotype.

Dased off this model	, the following dose a	aujusiments were calc
phenotype	gene dose	adjusted dose
PM	0	12.5%
IM	0.5	25%
	1	50%
NM	1.25	60%
	1.5	75%
	2	100%
UM	3	175%

Based on this model, the following dose adjustments were calculated:

Phenotype	Code	Gene-drug interaction	Action	Date
-----------	------	-----------------------	--------	------

KNMP Pharmacogenetics	PM	4 C	yes	yes	12 September 2022
Working Group decision	IM	4 C	yes	yes	
	UM	4 C	yes	yes	

Mechanism:

Metoprolol is primarily metabolised by CYP2D6 to O-desmethylmetoprolol and α -hydroxymetoprolol. The activity of metoprolol metabolites is neglectable. The active S-enantiomer of metoprolol is metabolised by CYP2D6 to a lesser extent than the less active R-enantiomer of metoprolol. A CYP2D6 genetic polymorphism may cause a change in the plasma concentration of metoprolol and the ratio S-metoprolol/R-metoprolol.

Clinical Implication Score:

Table 1: Definitions of the available Clinical Implication Scores

Potentially beneficial	PGx testing for this gene-drug pair is potentially beneficial. Genotyping can be considered on an individual patient basis. If, however, the genotype is available, the DPWG recommends adhering to the gene-drug guideline	0-2 +
Beneficial	PGx testing for this gene-drug pair is beneficial. It is advised to consider genotyping the patient before (or directly after) drug therapy has been initiated to guide drug and dose selection	3-5 +
Essential	PGx testing for this gene-drug pair is essential for drug safety or efficacy. Genotyping must be performed before drug therapy has been initiated to guide drug and dose selection	6-10 +

Table 2: Criteria on which the attribution of Clinical Implication Score is based

Clinical Implication Score Criteria	Possible	Given
	Score	Score
Clinical effect associated with gene-drug interaction (drug- or diminished efficacy-induced)		
CTCAE Grade 3 or 4 (clinical effect score D or E)	+	
CTCAE Grade 5 (clinical effect score F)	++	
Level of evidence supporting the associated clinical effect grade ≥ 3		
• One study with level of evidence score ≥ 3	+	
• Two studies with level of evidence score ≥ 3	++	
 Three or more studies with level of evidence score ≥ 3 	+++	
Number needed to genotype (NNG) in the Dutch population to prevent one clinical effect		
grade ≥ 3		
• 100 < NNG ≤ 1000	+	
• 10 < NNG ≤ 100	++	
• NNG ≤ 10	+++	
PGx information in the Summary of Product Characteristics (SmPC)		
At least one genotype/phenotype mentioned	+	
OR		
Recommendation to genotype	++	
OR		
At least one genotype/phenotype mentioned as a contra-indication in the corresponding section	++	
Total Score:	10+	0+
Corresponding Clinical Implication Score:		Potentially
		beneficial