

UGT1A1: irinotecan

1691 to 1694

*1/*28 = genotype leading to a reduced UGT1A1 activity, *28/*28 = genotype leading to a strongly reduced UGT1A1 activity, AUC = area under the concentration-time curve, CI = confidence interval, DPD = dihydropyrimidine dehydrogenase, 5-FU = 5-fluorouracil, HR = hazard ratio, HR_{adj} = adjusted hazard ratio, IM = IM, genotype otherwise = intermediate metaboliser, genotype otherwise = *1 in combination with an allele with reduced activity other than *28 (e.g. *1/*6), NS = non-significant, OR = odds ratio, OR_{adj} = adjusted odds ratio, PM = PM, genotype otherwise = poor metaboliser, genotype otherwise = two alleles with reduced activity of which at least one other than *28 (e.g. *6/*6), RR = relative risk, S = significant, SN-38 = active metabolite of irinotecan (7-ethyl-10-hydroxycamptothecin), SN-38G = 7-ethyl-10-hydroxy-camptothecin-glucuronide, UGT = uridine diphosphate glucuronosyltransferase UGT1A1*1 = TA₆ = [A(TA)₆TAA] = wild-type, UGT1A1*28 = TA₇ = [A(TA)₇TAA] (reduced UGT1A1 activity), UGT1A1*36 = TA₅ = [A(TA)₅TAA] (increased UGT1A1 activity), UGT1A1*37 = TA₈ = [A(TA)₈TAA] (UGT1A1 activity more strongly reduced than for *28), UGT1A1*6 = gene variant in Asians, reduced activity, comparable to *28. grade 3/4 adverse event: see NCI-CTC table under 'comments' for more information.

Disclaimer: The Pharmacogenetics Working Group of the KNMP formulates the optimal recommendations for each phenotype group based on the available evidence. If this optimal recommendation cannot be followed due to practical restrictions, e.g. therapeutic drug monitoring or a lower dose is not available, then the health care professional should consider the next best option.

Brief summary and justification of choices:

Irinotecan is a prodrug that is converted predominantly by carboxylesterases to the active metabolite SN-38, which has 100-1000-fold higher activity than irinotecan itself. Irinotecan is also metabolised by CYP3A4/5 to inactive metabolites. SN-38 is glucuronidated to the inactive metabolite SN-38-glucuronide by glucuronosyltransferases. SN-38 is predominantly metabolised by UGT1A1 and also by UGT1A6, UGT1A7, UGT1A9 and UGT1A10. Literature confirms an increase in SN-38 exposure for patients with a genetically reduced UGT1A1 activity (i.e. patients with one or more gene variants resulting in diminished UGT1A1 activity: *1/*28, IM genotype otherwise, *28/*28 or PM genotype otherwise) (Denlinger 2009, Minami 2007, Ramchandi 2007, De Jong 2006, Han 2006, Paoluzzi 2004, Innocenti 2004, Iyer 2002).

For *28/*28 and PM, there is ample evidence for an increased risk of serious adverse events at normal doses (also when compared to all other genotypes/phenotypes), while convincing evidence for an increased efficacy is lacking. Therefore, the KNMP Pharmacogenetics Working Group concludes that a gene-drug interaction is present and that it necessitates therapy adjustment (yes/yes-interactions).

For *1/*28 and IM, a similar amount of evidence is present. However, *1/*28 is the major group among Caucasian populations including the Dutch population. The standard irinotecan dose will therefore be based mainly on *1/*28. This is confirmed by Lu 2015 showing that most *1/*28+*1/*1 tolerate the standard dose and by the negligible dose adjustment calculated for *1/*28 compared to all genotypes (see below). This means that dose reduction for *1/*28 would lead in suboptimal doses for this patient group. Because the kinetic and clinical effects of *28 and *6 are comparable, the same is true for IM. Therefore, the KNMP Pharmacogenetics Working Group concludes that a gene-drug interaction is present, but that therapy adjustment is neither required nor advisable (yes/no-interactions). Based on the above, the dose for *1/*28 and *1/*1 (Dias 2014, Liu 2013, and Dias 2012), an increase for *1/*1 patients does not seem useful. Therefore, the KNMP Pharmacogenetics Working Group decided to refrain from a recommendation for *1/*1.

Elaborate justification of choices and calculation of the dose adjustment for *28/*28 (and PM)

There is strong evidence that the *28 and/or *6 variants are associated with an increased frequency of serious adverse events. All 9 meta-analyses investigating adverse events and 16 of the 23 studies found this increased risk (Yang 2018, Chen 2017, Liu 2017, Han 2014, Chen 2014, Liu 2014, Hu Clin Cancer Res 2010, Hu Eur J Cancer 2010, and Hoskins 2007; Tejpar 2018, Kweekel 2008, Liu 2008, Minami 2007, Côté 2007, Ramchandani 2007, de Jong 2006, Toffoli 2006, Han 2006, McLeod 2006, Massacesi 2006, Kitagawa 2005, Marcuello 2004, Rouits 2004, Innocenti 2004, and Ando 2000; Lankisch 2008, Stewart 2007, Zárate Romero 2006, Soepenberg 2005, Carlini 2005, Paoluzzi 2004, and Font 2003). In addition, all 7 meta-analyses and 3 studies investigating the effect of *28/*28 and/or *6/*6 and/or *6/*28 compared with all other genotypes, found that this risk was also increased for *28/*28 and/or PM patients compared to all other patients (Chen 2017, Liu 2017, Han 2014, Liu 2014, Hu Clin Cancer Res 2010, Hu Eur J Cancer 2010, Hoskins 2007; Tejpar 2018, Ramchandani 2007, Han 2006). Two of the three meta-analyses that

investigated grade 3-4 neutropenia showed that the risk of neutropenia was also elevated at low doses (Liu 2014 and Hu Clin Cancer Res 2010; Hoskins 2007). Two of the three meta-analyses that investigated grade 3-4 diarrhoea showed that the risk was elevated at high doses, but not at low doses (< 150 or 125 mg/m²) (Liu 2014 and Hu Eur J Cancer 2010; Hoskins 2007). The meta-analysis of Hoskins 2007 also did not find an elevated diarrhoea risk at high doses. For *28, the meta-analysis of Yang 2018 found the risk of severe toxicity (including neutropenia and diarrhoea) to be elevated at high doses (> 150 mg/m²), but not at low doses (< 150 mg/m²). However, for *6 this meta-analysis found the risk to be increased at both high and low doses, with the ORs being higher at low doses. The most common doses used in the Netherlands are high doses (180 of 350 mg/m²). Three of the five meta-analyses that investigated both neutropenia and diarrhoea showed that the risk of neutropenia increased more than the risk of diarrhoea (Yang 2018, Liu 2014, and Hoskins 2007; Chen 2017 and Liu 2017), but Yang 2018 showed this only for *28, not for *6. The fifth and second largest meta-analysis showed similar increased risk for diarrhoea and neutropenia for all patients, but in White patients only the risk for neutropenia was significantly increased (Liu 2017).

Four of the five meta-analyses and eight of the ten studies did not show the*28 and/or *6 variants to be associated with increased effectiveness of the treatment (Chen 2017, Dias 2014, Liu 2013, and Dias 2012; Liu 2017; Tejpar 2018; Kweekel 2008, Liu 2008, Côté 2007, Massacesi 2006, Carlini 2005, Marcuello 2004, and Font 2003; Toffoli 2006 and Han 2006). The fifth and largest meta-analysis (Liu 2017) found an increased efficacy for *1/*28+*28/*28 versus *1/*1. However, due to the *1/*28 and *28/*28 genotypes being analysed together, it is not clear whether this is also the case for *28/*28 separately. *1/*28 is the major group among White populations including the Dutch population. The standard irinotecan dose will therefore be based mainly on *1/*28. This is confirmed by Lu 2015 showing that most *1/*28+*1/*1 tolerate the standard dose, while most *28/*28 do not. Because development of severe adverse events results in temporary discontinuation of therapy, the effect of *28 on efficacy might be different in *1/*28 compared to *28/*28 (as suggested by Lu 2015). Moreover, the meta-analysis of Liu 2017 found the increased efficacy for *1/*28+ *28/*28 versus *1/*1 only in 4 retrospective studies with in total 538 patients and not in 12 prospective studies with in total 1292 patients, suggesting the significance of the result to be driven only by a small number of studies. Finally, the ORs for all patients and for all White patients in this meta-analysis were small (1.20 and 1.23). For these reasons, the KNMP Pharmacogenetics Working Group concludes that the evidence for an increased efficacy in *28/*28 and PM patients is not convincing enough to refrain from recommending a dose reduction in these patients.

The elevated frequency of serious adverse events in *28/*28 patients is consistent with the FDA advice in March 2005 (based on six studies) to add a passage to the Camptosar (irinotecan) SmPC that a reduction in the starting dose by at least one level of Camptosar should be considered for patients with the *28/*28 genotype.

All seven meta-analyses that investigated the effect of *1/*28 and/or *1/*6 found an elevated frequency of serious adverse events for *1/*28 and/or *1/*6 versus *1/*1 (Yang 2018, Chen 2017, Liu 2017, Chen 2014, Liu 2014, Hu Clin Cancer Res 2010, and Hu Eur J Cancer 2010). However, as indicated above, *1/*28 is the major group among White populations including the Dutch population. This group is larger than the *1/*1 group. The standard irinotecan dose will therefore be based mainly on *1/*28. This means that adjustment of the dose for this group is not useful or advisable.

Dose adjustments have been calculated on the basis of SN-38 AUC or clearance in studies:

- *28/*28: The calculation was based on 6 studies with a total of 28 patients with *28/*28 (Goetz 2013, Denlinger 2009, De Jong 2006, Paoluzzi 2004, Innocenti 2004, and Iyer 2002). The weighted average of the calculated dose adjustment is a dose reduction to 58% (range 39%-85%, median 53%) of the dose for *1/*1 and to 69% (range 48%-92%, median 64%) of the dose for all patients. As the frequency of *1/*1 in Europe is less than 50%, and as caution should be exercised in reducing the dose, the calculated dose adjustment compared to all patients has been chosen. This was translated to 70% to be more achievable in clinical practice. Although the calculation leads to a broad range in outcomes and therefore does not strongly support a dose reduction, the eventual percentage is equivalent to the reduction used in practice if patients develop severe toxicity on irinotecan (20-30% reduction). In addition, Lu 2015 confirmed that the maximum dose tolerated by the largest group (40%) of *1/*1+*1/*28 patients was 33% lower than the normal dose. In this study, reduction of the initial dose with 33% for *28/*28 did not result in a toxicity and efficacy that were comparable to those for *1/*1+*1/*28 on normal dose. This might however be due to the subsequent dose escalation with maximum doses for *28/*28 being less than 33% lower compared to the maximum doses for *1/*1 and *1/*28.
- PM: Because, the SN-38 glucuronide/SN-38 AUCs are almost the same for *28/*28 and *6/*6, suggestive of a similar effect on irinotecan metabolism (Minami 2007), the same dose reduction as for *28/*28 is recommended for PM, genotype otherwise.
- *1/*28: A total of 112 patients with *1/*28 were present in the 6 studies used for dose calculation (Goetz 2013, Denlinger 2009, De Jong 2006, Paoluzzi 2004, Innocenti 2004, and Iyer 2002). The weighted average of the calculated dose adjustment is a dose reduction to 80% (range 63%-96%, median 79%) of the dose for *1/*1 and to 95% (range 79%-116%, median 98%) of the dose for all patients. As the frequency of *1/*1 in Europe is less than 50%, and as caution should be exercised in reducing the dose, the calculated dose adjustment compared to all patients has been chosen. This is equivalent to a dose reduction by 5% and is minor to the extent that it supports the choice not to advise therapy adjustment for *1/*28 (and IM) patients at this time.

You can find a detailed overview of the observed kinetic and clinical effects in the background information text of the gene-drug interactions on the KNMP Kennisbank. You might also have access to this background information text via your pharmacy or physician electronic decision support system.

Recommendation concerning pre-emptive genotyping, including justification of choices:

The KNMP Pharmacogenetics Working Group considers genotyping before starting irinotecan to be essential for drug safety. Genotyping must be performed before drug therapy has been initiated to guide drug and dose selection. The clinical implication of the gene-drug interaction scores 8 out of the maximum of 10 points (with pre-emptive geno-typing considered to be essential for scores ranging from 6 to 10 points):

The risk of serious life-threatening toxicity is increased for patients with a genotype resulting in diminished UGT1A1 enzyme activity (*28/*28 and PM). This toxicity can be fatal (grade 5) (Rouits 2004). This results in the maximum score of 2 points for the first criterion of the clinical implication score, the clinical effect associated with the gene-drug interaction (2 points for CTCAE grade 5).

The increased risk for serious life-threatening toxicity (code E corresponding to grade 4) has been shown in 14 studies and 9 meta-analyses. This results in the maximum score of 3 points for the second criterion of the clinical implication score, the level of evidence supporting the associated clinical effect grade \geq 3 (3 points for three or more publications with level of evidence score \geq 3).

The number needed to genotype was deduced to be 41, using the data on Whites in the second largest meta-analysis (Liu 2017) and the prevalence of *28/*28 in the Dutch population. For White patients, Liu 2017 found only the risk for severe neutropenia to be increased for *28/*28 compared to *1/*1+*1/*28, not the risk for severe diarrhoea. In the 12 studies with Caucasian patients in this meta-analysis, the incidence of neutropenia grade 3-4 was 38% for *28/*28 and 11% for *1/*1+*1/*28. Thus, dose adjustment for *28/*28 leading to similar SN-38 concentrations as in *1/*1+ *1/*28 on normal dose, would prevent neutropenia grade 3-4 in 27% of *28/*28. With a prevalence of *28/*28 in the Dutch population of 9%, this would amount to 2.4% of all Dutch patients, i.e. a number needed to genotype of 41. The calculated number needed to genotype of 41 results in 2 out of the maximum of 3 points for the third criterion of the clinical implication score, the number needed to genotype (NNG) in the Dutch population to prevent one clinical effect grade \geq 3 (2 points for 10 < NNG \leq 100).

The Dutch Summary of Product Characteristics (SmPC) indicates that *28/*28 patients are at increased risk of haematological toxicity (grade 3 to 4) following administration of irinotecan at moderate or high doses (> 150 mg/m²). This results in 1 out of the maximum of 2 points for the fourth and last criterion of the clinical implication score, the pharmacogenetics information in the SmPC (1 point for at least one genotype/phenotype mentioned in the SmPC, but not mentioned as a contra-indication and no recommendation to genotype).

In addition to the clinical implication score indicating pre-emptive genotyping to be essential, three of the four costeffectiveness analyses suggest that pre-emptive genotyping followed by a 20%, 25%, or 50% dose reduction for *28/*28 or PM is cost saving and results in slightly more quality-adjusted life-years (Wei 2019, Gold 2009, and Obradovic 2008). The third cost-effectiveness analysis assumes the percentage of patients dying from irinotecan adverse events to be zero and suggests this strategy to be not cost-effective (additional costs of € 17,040,017 per quality adjusted life years gained) (Butzke 2016). Thus, three of the four cost-effectiveness analyses suggest that pre-emptive genotyping is not only essential, but also cost-saving. However, a systematic review of cost-effectiveness analyses concluded that current research does not support UGT1A1 polymorphism status as a cost-effective guide to irinotecan dosing (Henderson 2019). The latter is mainly based on the absence of firm evidence that genotype-based irinotecan dosing increases the number of QALY and the uncertainty whether the standard dose is optimal for wildtype and heterozygous patients. Recent studies suggest that irinotecan dose-escalation for wildtype and heterozygous patients might improve treatment outcome.

The table below follows KNMP nomenclature for UGT1A1 polymorphisms. The nomenclature used in the table below may therefore differ from the nomenclature used by the authors in the article.

Source	Code	Effect	Comments
ref. 1	3	Meta-analysis of 38 studies with a total of 6742 cancer	Authors' conclusion:
Yang Y et al.		patients treated with irinotecan, either as combined chemo-	'Both UGT1A1*6
UGT1A1*6 and		therapy or as monotherapy. Irinotecan doses in the studies	and UGT1A1*28
UGT1A1*28		varied from 60 to 375 mg/m ² .	polymorphisms can
polymorphisms		30 studies with a total of 3791 patients (2234x *1/*1, 1182x	be considered as
are correlated		*1/*28, 275x *28/*28) investigated the effect of *28 on neutro-	predictors of irinote-
with irinotecan-		penia. 25 studies with a total of 2780 patients (1568x *1/*1,	can-induced toxicity,
induced toxicity:		963x *1/*28, 249x *28/*28) investigated the effect of *28 on	with effect varying
A meta-analysis.		diarrhoea. All 34 studies could be used to investigate the	by race, cancer type
Asia Pac J Clin		effect of ethnicity, 30 studies to investigate the effect of irinote-	and irinotecan
Oncol		can dose and 27 studies to investigate the effect of tumour	dose.'
2018;14:e479-		type.	
e489.		14 studies with a total of 2072 patients (1322x *1/*1, 606x	

PMID: 2993227. 11/7.6, 144x *6*6) investigated the effect of *6 on neutropenia. ref. 1, continuation 5 studies with a total of 900 patients (595x 1*7, 245x 1*7, 26, 5x 5*6*6) investigate the effect of *6 on diarrhoea. All 16 studies to investigate the effect of *6 on diarrhoea. All 16 studies to investigate the effect of *6 on earthoea. All 16 studies included the used to invite the net Asians. Of the 38 studies included in the meta-analysis. 7 were also included separately in this risk analysis (Kweekel 2008, Côté, 2007, Massacesi 2006, Trofi 2006, Ennocenti 2004, Routis 2004, and Font 2003). A later publication of one study was also included in the meta-analysis of Lu 2017, 12 in the meta-analysis of Lu 2014, 9 in the meta-analysis of Lu 2010 Clin Cancer Res. 7 in the meta-analysis of Hu 2010 Eur J Cancer 8 in the meta-analysis of Hu 2010 Eur J Cancer 8 in case of significant heterogeneity. Otherwise, a fixed-effects model was used for the meta-analysis of Chen 2017. A random-effects model was used for the meta-analyses in Case of significant heterogeneity. Otherwise, a fixed-effects model was used for the quality of eligible studies. Publication bias was analysed, but only with Egger's test and the author's din otherwise, a fixed-effects model was used. The authors indicate that the quality of eligible studies. Publication bias was analysed to no variant allele) they investigated possible publication bias was analyses were performed for the subgroups. *28/*28. E 11/*28 in E 11/*28 and *28/*28 versus *1/*1: 10/* i diarrhoea grade III-IV (2.23-50) (R = 1.61) 10/* i diarrhoea grade III-IV (2.23-24) (R = 1.62) 10/* <th></th> <th></th> <th>-</th> <th></th> <th></th> <th></th> <th></th> <th></th>			-							
ref. 1, continuation tion $ \begin{aligned} & 56x + 56^+6) investigate the effect of * 6 on clarthoea. All 16 & studies to investigate the effect of timotecan dose and 11 & studies to investigate the effect of timotecan dose and 11 & studies to investigate the effect of timotecan dose and 11 & studies investigate the effect of timotecan dose and 11 & studies investigate the effect of timotecan dose and 11 & studies investigate the effect of timotecan dose and 11 & studies investigate the effect of timotecan dose and 11 & studies investigate the effect of timotecan dose and 12 & 2007. Massacesi 2006. Trofil 2006, finceonti 2004, Routis 2004, and Ford 2003). A later publication of one study was also included in the meta-analysis of Hu 2010 Clin Cancer (8 in the meta-analysis of Lu 2017, 12 in the meta- analysis of Hoskins 2007, and 2 in the meta-analysis of Chen 2017. A random-effects model was used for the meta-analysis of Chen 2017. A random-effects model was used for the meta-analyses in case of significant heterogeneity. Otherwise, a fixed-effects model was used. This indicates that the statistical method was chosen afterwards. The search and selection strategy was transparent and the data extraction was standardised. The authors indicate that the quality of eligible studies. Publication bias was analysed, but only with Egger's test and the authors did not specify or which of the four meta-analyses (two outcomes (neutropenia and diarhoea) and two compari- sons (heteroxygotes compared to no variant allele) in the our enta-analyses (two outcomes (neutropenia and 28/*28 versus *1/*1: $	PMID: 29932297.									
tionstudies could be used to investigate the effect of innotecn dose and 11 studies to investigate the effect of innotecn dose and 11 studies to investigate the effect of innotecn dose and 11 studies to investigate the effect of innotecn dose and 11 	ref 1 continua-							1		
studies to investigate the effect of tumorecan dose and 11 studies to investigate the effect of the vere in Asians. Of the 38 studies induded in the meta-analysis (Neekel 2008, Côté, 2007, Massacesi 2006, Toffol 2006, Innocenti 2004, Routis 2004, and Fon1 2003). A later publication of one study was also included in the meta-analysis (McLeod 2006). Of the 38 studies in this meta-analysis, 23 were also included in the meta-analysis of Lu 2017, 12 in the meta-analysis of Lu 2014, 21 to 2016 Eur J Cancer, 8 in the meta-analysis of Hau 2010 Eur J Cancer, 8 in the meta-analysis of Hau 2010 Eur J Cancer, 8 in the meta-analysis of Hau 2010 Eur J Cancer, 8 in the meta-analysis of Hau 2010 Eur J Cancer, 8 in the meta-analysis of Hau 2014, 4 in the meta- analysis of Hoskins 2007, and 2 in the meta-analyses in case of significant hetergeneliy. Otherwise, a fixed-effects model was used. This indicates that the statistical method was chosen afterwards. The search and selection strategy was transparent and the data extraction was standardised. The authors indicate that the quality of eligible studies was evaluated by surveying the methodologies and trial design, but do not present quality scores for the included studies. Publication bias was analysed, but only with Eggers test and the authors did not specify for which of the four meta-analyses (two outcomes (neutropenia and diarhoea) and two compari- sons (heterozygotes compared to no variant allele) and homo- zygotes compared to no variant allele) and homo- zygotes compared to no variant allele) and homo- zygotes compared to no variant allele) in the statistical ensures in (1825-500) (s)Incl- dence for (s)Incl- dence for (s)OR = 1.68 (grade III-IV (s)OR = 1.69 (s)OR = 1.69 (s)Incl- dence for (s)Incl- de	-									
studies to investigate the effect of tumour type. All studies investigating the effect of 5 were in Asians. Of the 38 studies included in the meta-analysis, 7 were also included separately in this risk analysis (Kwestel 2008, Côté, 2007, Massacesi 2006, Toffoli 2006, Innocenti 2004, Rouits 2004, and Forti 2003). A later publication of one study was also included in the meta-analysis (McLeod 2006). Of the 38 studies in this meta-analysis of McLeod 2006. In the meta-analysis of U u2 017, 12 in the meta-analysis of 1 Lu 2014, 9 in the meta-analysis of Hu 2010 C in Cancer, 8 in the meta-analysis of Ha 2014. 4 in the meta- analysis of Chen 2014 and Hu 2010 C in Cancer Res, 7 in the meta-analysis of Han 2014, 4 in the meta- analysis of Chen 2017. A random-effects model was used for the meta-analysis of Chen 2017. A random-effects model was used for the meta-analysis of Chen 2017. A random-effects model was used for the testastistical method was chosen afterwards. The search and selection strategy was transparent and the data extraction was standardised. The authors indicate that the quality of eligible studies was evaluated by surveying the methodologies and trial design, but do not present quality scores for the included studies. Publication bias was analysed, but only with Egger's test and the authors and analyses. No publication bias analyses (two outcomes (neutropenia and '28/'28 versus *1/*1: <				1						
"28/"28" E "28/"28" E "28/"28" E "28/"28" E "28/"28" E "1/"28" E "28/"28" E "1/"28" E "28/"28" E "1/"28" E *1 10 E 10 E 10 E 10 E 10 E 10								1		
Of the 38 studies included in the meta-analysis. 7 were also included separately in this risk analysis (Kweekel 2008, Cóté, 2007, Massacesi 2006, Toffoli 2006, Innocenti 2004, Rouis 2004, and Font 2003). A later publication of one study was also included in the meta-analysis (McLeod 2006). Of the 38 studies in this meta-analysis of McLeod 2006). Of the 38 studies in this meta-analysis of Hu 2017. 12 in the meta-analysis of Hu 2010 Eur J Cancer, 8 in the meta-analysis of Han 2014, 4 in the meta- analysis of Hoskins 2007, and 2 in the meta-analysis of Chen 2017.A random-effects model was used for the meta-analyses in case of significant heterogeneity. Otherwise, a fixed-effects model was used. This indicates that the statistical method was chosen alterwards. The search and selection strategy was transparent and the data extraction was standardised. The authors indicate that the quality of eligible studies. Publication bias was analysed, but only with Egger's test and the authors did not specify for which of the four meta-analyses (two outcomes (neutropenia and diarrhoea) and two compari- sons (heterozygotes compared to no variant allele) they investigated possible publication bias. No publication bias analyses were performed for the subgroups.?28/?28: E *1/?28: EIncurrential (garde III-IV) (g)Inci- (garde III-IV) (g)Incurrential (garde III-IV)OR = 1.69 (garde III-IV) (g)Inci- (garde III-IV) (g)Incurrential (garde III-IV)Interce (garde III-IV) (g)Inci- (garde III-IV) (g)Incurrential (garde III-IV)OR = 1.69 (garde III-IV) (g)Inci- (garde III-IV) (g)Incurrential (garde III-IV)OR = 2.28 (garde)OR = 1.45 (garde)<				•				l		
*28/*28: E*28/*28: E*207.28: E*28/*28: E*207.28: E*11/*28: E*28/*28: E*11/*28: A*11/*28: E*11/*28: A*28/*28: E*11/*28: A*11/*28: E*11/*128: A*28/*28: E*11/*128: A*11/*28: E*11/*128: A*28/*28: E*11/*128: A*11/*28: E*11/*128: A*28/*28: E*11/*128: A*11/*28: E*11/*128: A*28/*28: E*11/*28: A*28/*28: E*11/*28: A*28/*28: E*11/*28: A*28/*28: E*11/*28: A*11/*28: E*11/*128: A*28/*28: E*11/*28: A							e also	l		
*28/28: E *207, Massacesi 2006, Toffoi 2006, Innocenti 2004, Routis 2004, and Font 2003, A later publication of one study was also included in the meta-analysis, 23 were also included in the meta-analysis of Liu 2017, 12 in the meta-analysis of Liu 2014, 9 in the meta-analysis of Hu 2010 Eur J Cancer, 8 in the meta-analyses of Chen 2014 and Hu 2010 Clin Cancer Res, 7 in the meta-analysis of Han 2014, 4 in the meta- analysis of Hoskins 2007, and 2 in the meta-analyses of Chen 2017. A random-effects model was used for the meta-analyses in case of significant heterogeneity. Otherwise, a fixed-effects model was used. This indicates that the statistical method was chosen afterwards. The search and selection strategy was transparent and the data extraction was standardised. The authors indicate that the quality of eligible studies was evaluated by surveying the methodologies and trial design, but do not present quality scores for the included studies. Publication bias was analysed, but only with Egger's test and the authors did not specify for which of the four meta-analyses (two outcomes (neutropenia and diarrhoea) and two compari- sons (heterozyotes compared to no variant allele) hey investigated possible publication bias. No publication bias analyses were performed for the subgroups. Results:								1		
*28/'28: E *28/'28: E *1/'28: E *1/'28: E *1/'28: E *1/'28: E *28/'28: E *1/'28: E *28/'28: E *1/'28: E *28/'28: E *1/'28: E *28/'28: E *1/'28: E *28/'28: E *1/'28: E *28/'28: E *1/'28: E *1/'28: E *1/'28: E *28/'28: E *1/'28: E *1/'28: E *28/'28: E *1/'28: E *28/'28: E *1/'28: E *1								1		
Provide *17/28: EOf the 38 studies in this meta-analysis, 21 were also included in the meta-analysis of Liu 2017, 12 in the meta-analysis of Liu 2014, 9 in the meta-analysis of Ha 2010 Clin Cancer Res, 7 in the meta-analysis of Ha 2014, 4 in the meta- analysis of Ha 2017. A random-effects model was used for the meta-analyses in case of significant heterogeneity. Otherwise, a fixed-effects model was used. This indicates that the statistical method was chosen afterwards. The search and selection strategy was transparent and the data extraction was standardised. The authors indicate that the quality of eligible studies was evaluated by surveying the methodologies and trial design, but do not present quality scores for the included studies. Publication bias was analysed, but on ouvainant allele) in working was (two outcomes (neutropenia and diarthoea) and two comparisons (heterozygotes compared to no variant allele) in with comparisons (heterozygotes compared to no variant allele) in with with comparisons (heterozygotes. Results: Results: OR = 1.59 OR = 1.69 OR = 1.45 IP IP IP <			2004, and	Font 2003). A la	ater publicatio	n of one study	/ was	l		
*28/28:E *1/22:E *1/22:E *1/22:E *1/22:E *1/22:E *1/22:E *1/22:E *28/28:E *1/22:E *1/								1		
*28/28.E *28/28.E *1//28.E *1//28.E *1//28.E *1//28.E *28/28.E *1//28.E *28/28.E *1//28.E *28/28.E *1//28.E *28/28.E *1//28.E *28/28.E *1//28.E *28/28.E *1//28.E *28/28.E *1//28.E *28/28.E *1//28.E *28/28.E *1//28.E *28/28.E *1//28.E *28/28.E *1/28.E *28/28.E *1/28.E *28/28.E *1/28.E *1/28.E *1/28.E *1/28.E *1/28.E *28/28.E *1/28.E *28/28.E *1/28.E *28/28.E *1/28.E *28/28.E *1/28.E *28/28.E *1/28.E *28/28.E *1/28.E *1/28.E *1/28.E *1/28.E *1/28.E *1/28.E *1/28.E *1/28.E *1/28.E *1/28.E *1/28.E *1/28.E *28/28.E *1/28.E *								1		
*28/*28: E*28/*28: E*1/*28								1		
*28/*28: E*1/*28: E*28/*28: E*1/*28: E*1/*28: E*1/*28: E*1/*28: E*1/*28: E*1/*28: Eall ethnicities0.110.12(1)0.12(2)0.12(3)0.12(4)0.12(5)0.12(5)0.12(6)0.12(7)0.12(8)0.12(9)0.12(1)0.12(1)0.12(1)0.12(1)0.12(1)0.12(1)0.12(1)0.12(1)0.12(1)0.12(1)0.12(1)0.12(1)0.12(1)0.12(1)0.12(1)0.12(1)0.12(1)0.12(1)0.12(1)0.12(2)0.12(2)0.12(2)0.12(2)0.12(2)0.12(2)0.12(3)0.12(4)0.12(5)0.12(5)0.12(6)0.12(7)0.12(7)0.12(8)0.12(9)0.12(1)0.12(1)0.12(2)0.12(2)0.12(2)0.12(2)0.12(2)0.12(3)0.12<								1		
*28/'28: E *1/'28: E *1/'28: E *1/'28: E *1/'28: E								1		
2017.A random-effects model was used for the meta-analyses in case of significant heterogeneity. Otherwise, a fixed-effects model was used. This indicates that the statistical method was chosen afterwards. The search and selection strategy was transparent and the data extraction was standardised. The authors indicate that the quality of eligible studies was evaluated by surveying the methodologies and trial design, but do not present quality scores for the included studies. Publication bias was analysed, but only with Egger's test and the authors did not specify for which of the four meta-analyses (two outcomes (neutropenia and diarrhoea) and two compari- sons (heterozygotes compared to no variant allele) they investigated possible publication bias. No publication bias analyses were performed for the subgroups.Results:OR = 3.50OR = 1.91 (% of pa- tients)ORs (95% CI) for *1/*28 and *28/*28 versus *1/*1: (% of pa- tients)inci- dennce for tients)neutropenia grade III-IVOR = 3.50 (S) (S)OR = 1.45 (S)idence for (S)(S)(S)severe toxicityall ethnicities (1.45-2.50)If6% (1.45-2.50)severe toxicityall ethnicities (S) (S)Swhites (S) (S)OR = 1.45 (S)I2% (S)severe toxicityall ethnicities (S) (S)CR = 1.59 (S)whites (S) (S)OR = 1.69 (S)Ssevere toxicityall ethnicities (S) (S)OR = 1.67 (S)whites (S) (S)(S)(S)severe toxicityOR = 2.94 (S) (OR = 1.77) (S)OR = 1.77 (S)severe toxicit								1		
*28/28: E *1/*28: E *1/*28: E *1/*28: E *1/*28: E				1 1 105KI 15 2007,		leta-analysis		1		
*28/*28: E*1/*28*1/*28*1/*18*28/*28: E*1/*28: E*1/*280R = 1.5916%*1/*28: E*1/*28: E0R = 1.690R = 1.6911%*28/*28: E*1/*28: E0R = 1.690R = 1.6912%*1/*28: E*1/*28: E0R = 1.690R = 1.5912%*1/*28: E*1/*28: E0R = 1.690R = 1.5912%*28/*28: E*1/*28: E0R = 1.690R = 1.6912%*1/*28: E0R = 2.280R = 1.690R = 1.5912%*28/*28: E0R = 2.940R = 1.690R = 1.5912%*28/*28: E11.44:4.08(1.17-2.17)1.36:4.641.17-2.17*28/*28: E11.44:4.08(1.17-2.17)1.36:4.641.29-2.17*28/*28: E11.44:4.08(1.17-2.17)1.36:4.641.29-2.17*28/*28: E11.44:4.08(1.17-2.17)1.36:4.641.29-2.17*28/*28: E11.44:4.08(1.17-2.17)1.36:4.641.29-2.17*28/*28: E11.44:4.08(1.17-2.17)1.36:4.641.29-2.17*28/*28: E11.36:4.64(1.29-2.17)1.36:4.641.29-2.17				effects model w	as used for th	e meta-analve	ses in			
*28/*28: E *28/*28: E *1/*28: E *28/*28: E *1/*28: E *28/*28: E *28/*28: E *28/*28: E *28/*28: E *28/*28: E *1/*28: E *28/*28: E *1/*2: E *28/*28: E *28/*28: E *28/*28: E *1/*2: E *28/*28: E *1/*2: E *28/*28: E *1/*2: E *28/*28: E *28/*28: E *1/*2: E *28/*28: E *1/*2: E *28/*28: E *28/*28: E *1/*2: E *28/*28: E *28/*28: E *28/*28: E *1/*2: E *28/*28: E *28/*28: E *28/*28: E *28/*28: E *28/*28: E *1/*2: E *28/*28: E *2										
*28/*28: E *1/*28: E *1/*28: E *1/*28: E *1/*28: E *1/*28: E *28/*28: E *1/*28:				,						
The authors indicate that the quality of eligible studies was evaluated by surveying the methodologies and trial design, but do not present quality scores for the included studies. Publication bias was analysed, but only with Egger's test and the authors did not specify for which of the four meta-analyses (two outcomes (neutropenia and diarrhoea) and two compari- sons (heterozygotes compared to no variant allele) they investigated possible publication bias. No publication bias analyses were performed for the subgroups.Results:ORs (95% Cl) for *1/*28 and *28/*28 versus *1/*1:ORs (95% Cl) for *1/*28 and *28/*28 versus *1/*1:Includence of r r state and the subgroups.Results:OR = 3.50 (% of pa- tients) (% of grade III-IVIncutropenia grade III-IVOR = 1.69 (1.20-2.40) (S)Incutropenia grade III-IVOR = 1.69 (1.20-2.40) (S)Incutropenia grade III-IVOR = 2.28 (S)Incutropenia grade III-IVOR = 2.28 (S)Incutropenia (S)OR = 2.28 (S)Incutropenia grade III-IVOR = 2.28 (S) (S)Incutropenia (S)OR = 2.28 (S) (S)Incutropenia (S)OR = 2.28 (S) (S)Intropenia (S)OR = 2.28 (S) (S)Intropenia (S)OR = 2.28 (S) (S)Intropenia (S)OR = 1.59 (S) (S)Intropenia (S)OR = 2.43 (S) (S)Intropenia (S)OR = 2.43 (S) (S)Intropenia (S)OR = 1.59 (S) (S)Intropenia (S)OR = 1.60 (S) (S)Intropenia (S)<			chosen aft	erwards. The se	earch and sele	ction strategy	was	1		
*28/*28: E *1/*28: E *1/*28: E *28/*28: E *1/*28: E *28/*28: E *1/*28: E *28/*28: E *1/*28: E *28/*28: E *1/*28: E *28/*28: E *1/*28: E *1/*28: E *1/*28: E *28/*28: E *1/*28: E *1/										
*28/*28: E *28/*28: E *1/*28: E *28/*28: E *1/*28: E *28/*28: E *1/*28: E *28/*28: E *1/*28: E *28/*28: E *1/*28: E *1/*28: E *28/*28: E *1/*28: E *28/*28: E *1/*28: E *28/*28: E *1/*28: E *28/*28: E *1/*28: E *1/*28: E *28/*28: E *1/*28: E *28/*28: E *1/*28: E *1/*28: E *1/*28: E *1/*28: E *28/*28: E *1/*28: E *1/*28: E *1/*28: E *1/*28: E *1/*28: E *1/*28: E *1/*28: E *1/*28: E *28/*28: E *1/*28: E *1/								1		
*28/*28: E *1/*28: EPublication bias was analysed, but only with Egger's test and the authors did not specify for which of the four meta-analyses (two outcomes (neutropenia and diarrhoea) and two compari- sons (heterozygotes compared to no variant allele)) they investigated possible publication bias. No publication bias analyses were performed for the subgroups.Results: $\overline{ORs} (95\% Cl)$ for *1/*28 and *28/*28 versus *1/*1: $\overline{ORs} (95\% $								1		
*28/*28: E $*1/*28: E$ $*1/$								1		
"28/*28: E "1/*28: E "1								1		
*28/*28: E *1/*28: E *1/*28: E *1/*28: E *1/*28: E *1/*28: E *1/*28: E								1		
$*28/*28: E \\ *1/*28: E \\ *1/$								1		
$*28/*28: E \\ *1/*28: E \\ *1/$								1		
$ *28/*28: E \\ *1/*28: E \\ *1$								1		
$*28/*28: E \\ *1/*28: E \\ *1/$								1		
$*28/*28: E \\ *1/*28: E \\ *1/$								1		
$*28/*28: E \\ *1/*28: E \\ *1/$			-					1		
$ {}^{*28/*28: E} {}^{*28/*28: E} {}^{*1/*28: $			ORs (959	% CI) for *1/*28	and *28/*28 v	ersus *1/*1:		1		
$*28/*28: E \\ *1/*28: E \\ *1/*28: E \\ & & & & & & & & & & & & & & & & & & $								1		
$ *28/*28: E \\ *1/*28: E \\ *1$								1		
					*20/*20	*1 /*20		1		
$ \frac{28}{28} = \frac{1}{1/28} = 1$					20/20	1/ 20		1		
							``			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			neutrope	nia	OR = 3.50	OR = 1.91		l l		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								l l		
						(S)		l l		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		*1/*28: E			OR = 1.69	OR = 1.45	12%	l l		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			grade III-	IV						
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$						· · /				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$										
Whites $OR = 2.43$ $(1.44-4.08)$ (S) $OR = 1.59$ $(1.17-2.17)$ (S) Asians $OR = 2.94$ $(1.86-4.64)$ $(1.29-2.17)$ (S) severe toxicityall irinotecan doses $OR = 3.07$ $(2.09-4.52)$			toxicity							
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$				l l						
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$				vvnites				l l		
Asians $OR = 2.94$ $OR = 1.67$ $(1.86-4.64)$ $(1.29-2.17)$ (S) (S) severeall irinotecan $OR = 3.07$ $OR = 1.77$ toxicitydoses $(2.09-4.52)$ $(1.44-2.17)$								l l		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				Asians				l l		
(S) (S) severe all irinotecan OR = 3.07 OR = 1.77 toxicity doses (2.09-4.52) (1.44-2.17)				, 1010110						
severe all irinotecan OR = 3.07 OR = 1.77 toxicity doses (2.09-4.52) (1.44-2.17)										
toxicity doses (2.09-4.52) (1.44-2.17)			severe	all irinotecan				l l		
								l l		
						(S)		l l		
> 150 mg/m ² OR = 3.48 OR = 1.81										

ref. 1, continua-				(2.25-5.39)	(1.46-2.25)		
tion				(S)	(S)		
			< 150 mg/m ²	NS	NS		
		severe	all tumour	OR = 2.76	OR = 1.68		
		toxicity	types	(1.86-4.09)	(1.37-2.06)		
				(S)	(S)		
			digestive	OR = 2.90	OR = 1.73		
			system	(1.95-4.30)	(1.40-2.15)		
			-	(S)	(S)		
			respiratory	NS	NS		
			system				
		There wa	as no statistically	/ significant he	eterogeneity b	etween	
			es for the compa	arison of diarrl	hoea in *28/*2	8 versus	
		*1/*1.					
			rogeneity betwe		s was significa	ant, but	
			he other compar				
		There wa	as no publicatior	n bias accordir	ng to the Egge	er's test.	
		r					
		ORs (95	% CI) for *1/*6 a	nd *6/*6 versu	us *1/*1:	1.	
						inci-	
						dence	
				+ 0 / + 0	* 4 /4 0	for	
				*6/*6	*1/*6	*1/*1	
						(% of	
						pa-	
					00 4 05	tients)	
	PM: E	neutrope		OR = 3.03	OR = 1.95	17%	
	IM: E	grade III-IV		(2.05-4.47)	(1.34-2.85)		
		diorrhooo		(S)	(S)	0.00/	
		diarrhoea		OR = 4.03	OR = 1.98	8.6%	
		grade III-	-1 V	(1.98-8.32)	(1.26-3.11)		
			Aciena (the	(S) OR = 3.16	(S) OR = 1.95		
		severe toxicity	Asians (= the only ethnici-	(2.25-4.44)	(1.42-2.66)		
		toxicity	ty in the stu-	(2.23-4.44) (S)	(1.42-2.00) (S)		
			dies)	(0)	(0)		
		severe	all irinotecan	OR = 3.17	OR = 2.08		
		toxicity	doses	(2.24-4.48)	(1.46-2.97)		
				(S)	(S)		
			> 150 mg/m ²	OR = 2.91	OR = 1.82		
			> 100 mg/m	(2.02-4.18)	(1.28-2.57)		
				(S)	(S)		
			$< 150 \text{ mg/m}^2$	OR = 9.42	OR = 3.49		
			,	(2.43-36.5)	(1.28-9.58)		
				(S)	(S)		
		severe	all tumour	OR = 3.21	OR = 1.75		
		toxicity	types	(2.20-4.67)	(1.22-2.52)		
				(S)	(S)		
			digestive	OR = 3.00	OR = 1.66		1
			system	(2.04-4.42)	(1.18-2.35)		
				(S)	(S)		
			respiratory	OR = 18.2	OR = 12.0		
			system (only	(1.56-212)	(1.02-141)		
			1 study)	(S)	(S)		
			as moderate het			dies for	
			parison of neutro				
			as no statistically		eterogeneity b	etween	
			es for the other				
			as no publicatior				
ref. 2	4		cancer patients				Authors' conclusion:
Tejpar S et al.			ery two weeks in				We found that a
Clinical and phar-		leucovorir	n for 6 months. A	dverse events	s were assess	ed	complex of risk

	,				Γ
macogenetic			lational Cancer Institute Comm		factors is involved in
determinants of			system. Any grade III or IV toxic		the development of
5-fluorouracyl/			ol, in a 20% dose reduction for		toxicity, including
leucovorin/irino-		cycles after toxicit		UGT1A1. Parame-	
tecan toxicity:		Periods with lower	red chemotherapy doses were	not included	ters that are readily
results of the		in the analysis of a	adverse events. Dose reductior	n was used as	available in clinical
PETACC-3 trial.		a global measure	practice, notably		
Eur J Cancer.			had stage III colon cancer.		sex, age and perfor-
2018;99:66-77.		28.2% of patients	II-IV 9.0%	mance status, are	
PMID: 29909091.		neutropenia grade	stronger predictors		
			than the UGT1A1		
ref. 2, continua-			dverse event. A dose reduction	i was applied	*28 genotype.'
tion		in 30.9% of patien			
			er than hormone replacement t		
			it a strong effect of comedication		
			e adverse events is not expecte		
		In a parallel arm o	of this randomised clinical trial,	572 patients	
		were treated with	5-fluorouracil and leucovorin fo	r 6 months,	
		allowing comparis	on of the effect of *28 in patien	ts treated	
		with and without in			
			ined by multivariate regression	analyses.	
			or age, sex, body surface area-	•	
			nance status, bilirubin > 0.5x th		
		•	case of the neutropenia and do		
			•		
		outcomes also for	baseline neutrophils.		
				(1) - 500	
			nated based on the genotypes of	of the 568	
			in the Kaplan-Meier curve):		
		- 234x *1/*1			
		- 258x *1/*28			
		- 82x *28/*28			
		Results:			
		Results for *28/*2	28 compared to *1/*1+*1/*28 (r	eutropenia,	
			adverse effects) or for *28/*28		
			/*1 (diarrhoea and dose reducti		
				incidence	
				for *1/*1+	
				*1/*28	
		neutropenia	$OR_{adj} = 2.89 (1.65-5.07) (S)$	28% of	
		grade III-IV	Kaplan-Meier curve analy-	patients	
		giado in iv	sis showed *28/*28 to be	Pationio	
			associated with more fre-		
			quent and earlier neutrope-		
			nia grade III-IV (S).		
			In univariate analysis, there		
			was no difference between		
			*1/*1 and *1/*28.		
			The result was NS in the		
			arm without irinotecan,		
			confirming the result in the		
			arm with irinotecan to be		
			caused by the *28-irinote-		
			can interaction.		
			The percentage of patients		
			with neutropenia grade III-		
			IV in the arm without irino-		
			tecan, was 23% of that in		
			the arm with irinotecan		
			(6.4% versus 28.2%).		
	*28/*28: E	neutropenia	$OR_{adj} = 2.33 (1.03-5.24) (S)$		
1	1		The result was NS in the		
		grade IV	arm without irinotecan,		

		П		,	
ref. 2, continua- tion			confirming the result in the		
tion			arm with irinotecan to be caused by the *28-irinote-		
			can interaction.		
			The percentage of patients		
			with neutropenia grade IV		
			in the arm without irinote-		
			can, was 28% of that in the		
			arm with irinotecan (2.5%		
		ali a unha a a a	versus 9.0%).		
		diarrhoea grade III-IV	Trend for a decrease with increasing number of *28-		
		grade m-rv	alleles ($p = 0.068$) (NS).		
			A similar trend, albeit with a		
			somewhat higher p-value (p		
			= 0.136), was present in the		
			arm without irinotecan, con-		
			tradicting the result to be		
			caused by the *28-irinote-		
			can interaction. The percentage of patients		
			with diarrhoea grade III-IV		
			in the arm without irinote-		
			can, was 49% of that in the		
			arm with irinotecan (5.1%		
			versus 10.4%).		
		total serious	x 1.7 (S)	0.40 per	
		adverse events	The result was NS in the arm without irinotecan,	patient	
			confirming the result in the		
			arm with irinotecan to be		
			caused by the *28-irinote-		
			can interaction.		
			For *1/*1+*1/*28, the rate of		
			serious adverse events in the arm without irinotecan,		
			was 58% of the rate in the		
			arm with irinotecan.		
	*1/*28: E	dose reduction	OR _{adj} per *28-allele = 1.35		
			(1.01-1.79) (S)		
			The result was NS in the		
			arm without irinotecan,		
			confirming the result in the arm with irinotecan to be		
			caused by the *28-irinote-		
			can interaction.		
			The percentage of patients		
			with dose reduction in the		
			arm without irinotecan, was		
			50% of that in the arm with irinotecan (15.5% versus		
			30.9%).		
		relapse-free	*28/*28 showed a trend for		
		survival of	a better survival in the arm		
		stage III	with irinotecan than in the		
		patients	arm without irinotecan (p = 0.07) (NO) but $44/44 + 44/400$		
			0.07) (NS), but *1/*1+*1/*28		
		<u> </u>	did not.	<u> </u>	
		Note: The gene va	ariant 3156G>A was also deteri	mined.	
		-	as a strong association betwee		
			ivariate logistic regression ana		
		both gene variants	s, only *28 remained significant	as predictor	
L	1	l .			1

ref. 2, continua-	1	for bilirubin >0.5x upper limit of normal and as predictor for	
tion		neutropenia grade III or grade IV. For this reason, no furthe	r
		analyses were performed for 3156G>A.	
ref. 3	3	Meta-analysis of 9 studies with in total 577 Asian lung cancel	er Authors' conclusion:
Chen X et al.	-	patients treated with irinotecan, either as combined chemot	
UGT1A1 poly-		rapy or as monotherapy. Irinotecan doses in the studies var	
morphisms with		from 50 to 100 mg/m ² . In addition, the therapy interval is rel	
irinotecan-indu-		tively long in lung cancer treatment.	not be a suitable
ced toxicities and		Of the 9 studies included in the meta-analysis, 1 was also	biomarker to predict
treatment out-		included separately in this risk analysis (Han 2006).	irinotecan (IRI)-
come in Asians		Of the 9 studies in this meta-analysis, 5 were also included	
with lung cancer:		the meta-analysis of Liu 2017, 3 in the meta-analysis of Har	
a meta-analysis.		2014, 2 in the meta-analyses of Dias 2012 and Hu 2010 Eu	
Cancer Chemo-		Cancer, and 1 in the meta-analysis of Chen 2014. None we	
ther Pharmacol		included in the meta-analyses of Liu 2014 and Liu 2013 (bo	
2017;79:1109-		colorectal cancer and mainly Caucasian), Dias 2014, Hu 20	
1117.		Clin Cancer Res and Hoskins 2007.	with a higher risk
PubMed PMID:		Data on *28 were derived from 9 studies including a total of	0
28502040.		524 patients. For diarrhoea, the comparison between *1/*28	
		and *1/*1 was based on 439 patients from 8 studies of whic	
ref. 3, continua-		$78 \times 1/28$. The comparison between $\times 28/28$ and $\times 1/11$ was	IRI-based chemo-
tion		based on 104 patients from 3 studies of which 8 *28/*28. Fo	
		neutropenia, the comparison between $^{1/*28}$ and $^{1/*1}$ was	
		based on 412 patients from 7 studies of which 71 *1/*28. Th	
		comparison between *28/*28 and *1/*1 was based on 81 pa	
		tients from 2 studies of which 5 *28/*28. For tumour response	
		the comparison between $\frac{1}{28} + \frac{28}{28}$ and $\frac{1}{11}$ was base	
		on 316 patients from 7 studies of which $66 \times 1/28 \times 28/28$.	34
		Data on *6 were derived from 6 studies including a total of 4	1/1
		patients. For diarrhoea, the comparison between *1/*6 and	
		*1/*1 was based on 182 patients from 4 studies of which 61	
		*1/*6. The comparison between *6/*6 and *1/*1 was based of	00
		80 patients from 3 studies of which 4 *6/*6. For neutropenia	
		the comparison between *1/*6 and *1/*1 was based on 153	
		patients from 3 studies of which 53 *1/*6. The comparison	
		between *6/*6 and *1/*1 was based on 58 patients from 2	
		studies of which 3 *6/*6. For tumour response, the comparis	5011
		between *1/*6+*6/*6 and *1/*1 was based on 182 patients	
		from 4 studies of which 63 *1/*6+*6/*6.	
		Toxicity was defined as grade 3-4 toxicity and tumour respo	(I)-
		se as the response rate. A random-effects model was used for the meta-analysis in	
		case of significant heterogeneity. Otherwise, a fixed-effects	
		model was used. This indicates that the statistical method w	
		chosen afterwards. The search and selection strategy was	las
		transparent and the data extraction was standardised.	
		The authors indicate that the quality of the included studies	
		was evaluated based on information collected from the studies	
		including study design, number of patients, population,	
		mutation detection method, race, histology, Hardy-Weinberg	a
		equilibrium, chemotherapy regimen, grade criteria for	כ
		neutropenia and diarrhoea and definitions of treatment	
		outcome measures, but do not present quality scores for the	e
		studies.	
		Publication bias analysis was not performed.	
		Results:	
		ORs (95% CI) for *1/*28 and *28/*28 versus *1/*1:	
		inciden-	- 1
		ce for	
		*1/*1 (%	/
		*28/*28 *1/*28 of pa-	-
		tients)	
	<u> </u>	lients)	

		II			.	1
ref. 3, continua-	*28/*28: E	diarrhoea	OR = 5.93	NS	11%	
tion	*1/*28: AA		(1.46-24.0) (S)		4	
				was also signifi-		
			cant for *28/*28			
			*1/*28 (OR = 6.2			
			(S)) (3 studies w of which 8 *28/*2			
		noutrononio	NS	20). NS	30%	
		neutropenia		-	30%	
			There was also association for *			
			*1/*1+*1/*28 (NS			
			with 101 patient			
			*28/*28) and for			
				S) (8 studies with		
				which 95 *1/*28+		
			*28/*28).			
		tumour	NS for *1/*28+*2	28/*28 versus	54%	
		response	*1/*1		0.70	
			statistically signif	cant heterogeneit	V	
		between the s			5	
		ORs (95% CI)) for *1/*6 and *6/*	6 versus *1/*1:		
					inciden-	
					ce for	
					*1/*1 (%	
			*6/*6	*1/*6	of pa-	
					tients)	
	PM: E	diarrhoea	OR = 17.6	OR = 4.36	8%	
	IM: E		(2.58-121) (S) (1.74-10.9) (S)		- / -	
			The association was also signifi-			
				rsus *1/*1+*1/*6		
			(OR = 5.26 (1.8	5-14.3) (S)) (5		
			studies with 307	patients of		
			which 17 *6/*6).			
		neutropenia	NS	NS	26%	
			The association	was significant		
			for *6/*6 versus			
			= 5.00 (1.69-14.			
			studies with 277	patients of		
			which 17 *6/*6).			
			The association			
			•	/*6+*6/*6 versus		
			*1/*1 (OR = 2.40			
			(S)) (4 studies w			
		4	of which 75 *1/*		500/	
		tumour	NS for *1/*6+*6/	°ь versus *1/*1	59%	
		response	atotiotically size "	oont botors are -''		
		between the s	statistically signif	cant neterogenei	у	
ref. 4	4			(59 ctudioc) with	in total 6007	Authors' conclusion:
Liu XH et al.	4		of 57 clinical trials d with irinotecan, e			Our data showed
Predictive value			otherapy. Irinotec			that the UGT1A1*28
of UGT1A1*28			mg/m ² . Patients v			polymorphism had a
polymorphism in			dies and of mixed			significant relation-
irinotecan-based			ents had metastati			ship with toxicity and
chemotherapy.			tumours in 6 stud			response to irinote-
J Cancer			5 studies, advance			can-based chemo-
2017;8:691-703.			cancer in 2 studie			therapy. This poly-
PubMed PMID:			dies and another t			morphism may be
28367249.			. The quality of th			useful as a monito-
20001270.			-point Newcastle-			ring index for cancer
			cations included in		is. 11 were	patients receiving
			eparately in this ri			irinotecan-based
L	1					

<u> </u>					
ref. 4, continua- tion	2006, Innocen 2003 and Iyer included in the Of the 57 publ also included i 13 in the meta- Hu 2010 Clin (8 in the meta- meta-analyses comparison be patients from 2 Data on neutro total of 5232 p *1/*1 was base comparison be patients from 2 Data on neutro total of 5232 p *1/*1 was base comparison be patients from 2 Data on tumou ding a total of Toxicity was d as partial or co A random-effe case of signific effects model method was cl strategy was to dardised. Publication bia In case of pub and fill method	2006, de Jong 200 ti 2004, Marcuello 2002). A later pub e meta-analysis (M ications included in in the meta-analysis -analysis of Liu 20 Cancer Res, 9 in the analyses of Liu 20 Cancer Res, 9 in the aswas determined lication bias (a sign d was carried out for a performed for all of the constant of the cancer and the analyses of the cancer and the aswas determined lication bias (a sign d was carried out for a performed for all of the cancer and the a some a for all of the cancer and the a some carried out for all of the cancer and the a some carried out for all of the cancer and the cancer and the a some carried out for all of the cancer and the cancer an	2004, Rouits 200- lication of one stu- cLeod 2006). In the meta-analys s of Hu 2010 Eur 14, 10 in the meta- ne meta-analysis of 13 and Dias 2012, Hoskins 2007, and from 44 studies in arison between *1 s from 28 studies. d *1/*1 was based 151 *28/*28. d from 49 studies arison between *1 s from 32 studies. d *1/*1 was based 219 *28/*28. lerived from 18 stu- oxicity and tumour of for the meta-an (p < 0.1). Otherwi- icates that the sta The search and s d data extraction w by Egger's and B nificant Egger's te or adjusting. Public	4, Font dy was also is, 17 were J Cancer, a-analysis of of Han 2014, 7 in the d 5 in the cluding a /*28 and The on 2610 including a /*28 and The on 3575 udies inclu- response alysis in ise, a fixed- tistical election //as stan- egg's tests. st), a trim cation bias	chemotherapy.'
	subgroups. Results:		,,,		
	ORs (95% C	l) versus *1/*1:			
		*28/*28	*1/*28	inciden- ce for *1/*1 (% of pa- tients)	
	Diarrhoea	_I	I		
	all patients	OR = 3.97 (1.88-8.38) (S)		9.3%	
		cant for *28/*28 *1/*28 (OR = 3.6 (S)) (24 studies patients).	64 (2.01-6.58) with 3175		
	Caucasian patients	NS The association for *28/*28 verse (OR = 1.62 (1.0) studies with 121 The association significance for versus *1/*1 (NS with 1214 patier	us *1/*1+ *1/*28 3-2.53) (S)) (10 1 patients). did not reach *1/*28+*28/*28 S) (11 studies tts).	13%	
	Asian patients	OR = 8.98 (5.21-15.5) (S)	OR = 1.85 (1.37-2.50) (S)	8.2%	

	1		· · ·	<u>_</u>	
ref. 4, continua- tion			The association was also signifi- cant for $*28/*28$ versus $*1/*1+$ *1/*28 (OR = 8.64 (4.14-18.0) (S)) (13 studies with 1917 patients).		
		colorectal cancer patients	$\begin{array}{c c} OR = 3.53 & OR = 1.60 \\ \hline (1.54-8.09) (S) & (1.11-2.31) (S) \\ \hline The association was also significant for *28/*28 versus *1/*1+ \\ *1/*28 (OR = 3.16 (1.61-6.19) \\ \hline (S)) (17 studies with 2656 \\ \hline patients). \end{array}$		
		non-small cell lung cancer patients	- NS The association was also not significant for *1/*28+*28/*28 versus *1/*1 (NS) (4 studies with 321 patients).		
		small cell lung cancer patients	- NS The association was significant for *28/*28 versus *1/*1+*1/*28 (OR = 19.90 (2.57-154) (S)) (2 studies with 64 patients) and for *1/*28+*28/*28 versus *1/*1 (OR = 3.95 (1.42-11.0) (S)) (3 stu- dies with 131 patients).		
	*28/*28: E *1/*28: E	Neutropenia all patients	OR = 5.34 $OR = 1.71$ $(3.05-9.33)$ (S) $(1.41-2.08)$ (S)The association was also significant for *28/*28 versus *1/*1+*1/*28 (OR = 4.12 (2.36-7.20)(S)) (28 studies with 3668patients).	14%	
		Caucasian patients	OR = 5.39 $OR = 1.86$ $(3.43-8.47)$ (S) $(1.34-2.60)$ (S)The association was also significant for *28/*28 versus *1/*1+*1/*28 (OR = 3.39 (1.92-5.98)(S)) (12 studies with 1455 patients).	11%	
		Asian patients	OR = 4.77 $OR = 1.56$ $(1.71-13.2)$ (S) $(1.07-2.27)$ (S)The association was also significant for *28/*28 versus *1/*1+*1/*28 (OR = 4.16 (1.44-12.0)(S)) (15 studies with 2154patients).	16%	
		colorectal cancer patients	OR = 5.07 $OR = 1.76$ $(2.56-10.0)$ (S) $(1.40-2.23)$ (S)The association was also significant for *28/*28 versus *1/*1+*1/*28 (OR = 3.70 (1.88-7.30)(S)) (20 studies with 2894patients).		
		non-small cell lung cancer patients	-NSThere was a trend for an increased risk for *1/*28+*28/*28 versus *1/*1 (p = 0.064, NS) (4 studies with 351 patients).		
	*1/*28 + *28/*28: AA#	Tumour respo all patients	onse OR = 1.20 (1.07-1.34) (S) for *1/*28+*28/*28 versus *1/*1		
L			11		

r	1.		
ref. 4, continua-	Caucasian	OR = 1.23 (1.06-1.42) (S) for	
tion	patients	*1/*28+*28/*28 versus *1/*1	
	Asian patients	NS for *1/*28+*28/*28 versus *1/*1	
	colorectal	OR = 1.24 (1.05-1.48) (S) for	
	cancer	*1/*28+*28/*28 versus *1/*1	
	patients	1/ 201 20/ 20 001303 1/ 1	
	non-small	NS for *1/*28+*28/*28 versus	
	cell lung	*1/*1	
	cancer		
	patients		
	small cell	NS for *1/*28+*28/*28 versus	
	lung cancer patients	*1/*1	
		NO for \$4 /\$00 \$200 /\$20	
	prospective studies	NS for *1/*28+*28/*28 versus *1/*1	
	(12 studies,	1/ 1	
	1292 pa-		
	tients)		
	retrospective	OR = 1.54 (1.06-2.23) (S) for	
	studies	*1/*28+*28/*28 versus *1/*1	
	(4 studies,		
	538 pa-		
	tients)	there was a statistically significant	actoro
		h, there was a statistically significant latent the studies for the following compared to the studies for the following compared to the studies for the following compared to the studies for the studies f	
		itients, *28/*28 versus *1/*1	
		tients, *28/*28 versus *1/*1+*1/*28	
		asian patients, *1/*28+*28/*28 versu	s *1/*1
		ectal cancer patients, *28/*28 versus	
		ectal cancer patients, *1/*28 versus *	
	- color *1/*2	ectal cancer patients, *28/*28 versus	*1/*1+
		o arisons for all patients, ethnicity and	vear of
		gether accounted for over 90% of the	
	geneity.		
		nia, there was a statistically significar	nt hetero-
		een the studies for the following com	parisons:
		tients, *28/*28 versus *1/*1	
		tients, *28/*28 versus *1/*1+*1/*28	*4 /***
		asian patients, *28/*28 versus *1/*1+	.^1/^28
		n patients, *1/*28 versus *1/*1 n patients, *28/*28 versus *1/*1	
		n patients, *28/*28 versus *1/*1+*1/*2	8
		ectal cancer patients, *28/*28 versus	
	- color	ectal cancer patients, *28/*28 versus	
	*1/*2		
		arisons for all patients, *28/*28 versu	
		Imber of patients accounted for 25%	
		v and no other factors were found. esponse, there was a statistically sigr	ificant
		between the studies for the followin	
	risons:		
		tients	
		patients	
		ectal cancer patients	
		spective studies	
		publication bias for any of the comp	arisons
	mentioned at Results for al	oove. I patients were not affected by omitti	
		n the meta-analyses.	
		arison of *1/*28+*28/*28 versus *1/*1	for all
		required sample size for diarrhoea, n	
μ			

ref. 4, continua- tion		nia and tumour response was respectively 763, 1162 and 1078 patients. The number of patients in these meta-analyses were higher.	
ref. 5 Lu CY et al. Clinical implica- tion of UGT1A1 promoter poly- morphism for irinotecan dose escalation in metastatic colo- rectal cancer patients treated with bevacizu- mab combined with FOLFIRI in the first-line setting. Transl Oncol 2015;8:474-9. PubMed PMID: 26692528.	3	To patients with metastatic colorectal cancer and a life expectancy of more than 3 months were treated with bevacizumab plus FOLFIRI (folinic acid, 5-fluorouracil and irinitotecan) and followed for a period of 6 to 34 months (median 22 months). The initial irinotecan dose was 180 mg/m² every 2 weeks for patients with the *1/*1 or *1/*28 genotype and 120 mg/m² every two weeks (67% of the normal dose) for patients with the *28/*28 genotype. The dose of irinotecan was escalated by 20 to 30 mg/m² every two cycles until grade 3/4 adverse events occurred or until the maximum dose of 260 mg/m² for *1/*128 und 210 mg/m² for *28/*28 (81%) of the maximum dose for *1/*1 and 88% of the maximum dose of *1/*128 was reached. After the first two treatment cycles, haematological and nonhaematological adverse events (including neutropenia, diarrhoea, and nausea/vomiting) were assessed radiologically, and the best response was recorded. The first response assessment was usually after the fourth or sixth cycle. Complete response was defined as the disappearance of all target lesions. Partial response was defined as at least a 30% decrease in the sum of the longest diameter from baseline. Progressive disease was defined as at least a 20% increase in the sum of the longest diameter secorded before treatment as reference or the identification of one or more new lesions. Stable disease was defined as net least sither sufficient shrinkage to quality for partial response nor sufficient increase to quality for progressive disease. The best response was defined as the as the sufficient shrinkage to quality for partial response nor sufficient increase to quality for progressive disease. The best response was defined as the best response was defined as net everting as a difficult as the best results corded by the investigators because the confirmatory imaging evidence of response obtained after four to six cycles of chemotherapy was not consistently available.	Authors' conclusion: 'For patients with the UGT1A1 *28/*28 genotype, the star- ting dose of irinote- can should be de- creased to diminish the adverse events of irinotecan Our study showed that mCRC patients with UGT1A1 *1/*1 and *1/*28 genoty- pes could receive escalated doses of irinotecan to obtain a more favorable clinical outcome without significant AEs.'

ref. 5, continua-		response (e	ither com-	x 0.26 (S)	77%	
tion		plete or part		x 0.20 (0)	11/0	
		disease con	trol rate	x 0.43 (S)	94%	
		(either respo stable disea		The majority of *1/*1+*1/*28 pa- tients (74%) had had a partial res- ponse, the majority of *28/*28 patients (60%) had progres-		
		progression	-free	sive disease. S for *28/*28 ver-		
		survival		sus *1/*28 versus *1/*1 (increase with the number of *1- alleles)		
		adverse eve 3/4	ents grade	x 9.7 (S)	6.2%	
		maximum	mean	x 0.76 (156 mg/kg) (S)	206 mg/kg	
	*28/*28: A	dose tolerated	largest group (40% of patients)	x 0.67 (120 mg/kg) (S)	180 mg/kg	
ref. 6 Dias MM et al. The effect of the UGT1A1*28 allele on survival after irinotecan- based chemothe- rapy: a collabora- tive meta-analy- sis. Pharmacogeno- mics J 2014;14:424-31. PubMed PMID: 24709690.	4	publications) either as com RI (folinic acid commonly ad studies varied weeks. Additi through corre Of the 10 pub also included Toffoli 2006, with two coho the meta-anal Of the 10 pub ded in the me meta-analyse Clin Cancer F not investigat Data on overa ding a total of between *1/*2 studies of wh based on 104 The unadjusted based on 919 The adjusted studies of wh Data on prog studies includ comparison w which 584 *1/ *28/*28 and * of which 134 700 patients f	s of 11 obser with in total 1 bined chemo d, 5-fluoroura ministered red from 60 mg onal data we spondence v blications incl separately in Kweekel 200 ort studies (M lysis. blications in the ta-analyses as of Liu 2014 Res, Hu 2010 e clinical efficient all survival we f 1677 patient 28 and *1/*1 ich 605 *1/*2 10 patients from comparison ich 98 *28/*2 ression-free s bing a total of between *1/*2 10 studies of vas based on *28. The una 1/*1 was bas *28/*28. The from 8 studie and point was	ere derived from 10 stu ts. The unadjusted cor was based on 1229 pa 8. The adjusted compa om 7 studies of which 5 on between *28/*28 an m 10 studies of which was based on 626 pati	vith irinotecan, erapy. FOLFI- is the most es in the m ² every 3 cations investigators. visis, 3 were rcuello 2004, he publication o included in ere also inclu- 012. The 4, Hu 2010 skins 2007 did udies inclu- inparison tients from 9 arison was 528 *1/*28. d *1/*1 was 158 *28/*28. ients from 7 rom 10 adjusted d on 1360 e adjusted studies of etween m 10 studies was based on 5.	Authors' conclusion: 'In conclusion, the study demonstrates that UGT1A1*28 is unlikely to be strongly prognostic of overall survival for individuals treated with irinotecan. This is in contrast to the strong association previously reported between UGT1A1 *28 and irinotecan- related toxicity.'

ref. 6, continua-		sion, with censorin	a of death not related	to cancer, was used if	
tion			urvival data were not		
			djusted hazard ratios		
				d risks differences for	
		cycles with reduce			
			model was used for th	e meta-analyses of	
		genotype and surv	ival outcomes. A fixed	d-effects model was	
		used for meta-ana	lyses on the effect of	subgroups.	
			d methods of this colla		
			tudy protocol, of which		
			earch and selection str		
			extraction was standa		
				led studies confirmed	
		to each of 22 quali		maniaana hutanlufar	
				nparisons, but only for	
			d progression-free su		
		was not analysed f	educed irinotecan dos	e. Publication bias	
		was not analysed i	or the subgroups.		
		Results:			
		Risk versus *1/*1			
			*28/*28	*1/*28	
		overall survival	NS	NS	
			Similar results were		
			ted HRs (both NS).		
			Similar results were		
			sed subgroups (colo		
			high dose (≥ 250 mg		
			intermediate dose (1		
			every 2 or 3 weeks),		
				ment with irinotecan	
				treatment with irino-	
			tecan and platinum of		
			can monotherapy, 1 ^s		
	*28/*28:		3 rd line therapy) (NS		
	AA	progression-	NS Similar regulta wara	NS found for the odius	
	*1/*28: AA	free survival	Similar results were ted HRs (both NS).		
			Similar results were	found for all analy-	
			sed subgroups (colo		
			high dose (≥ 250 mg		
			intermediate dose (1		
			every 2 or 3 weeks),		
				ment with irinotecan	
				treatment with irino-	
			tecan and platinum of		
			can monotherapy, 1		
			3 rd line therapy) (NS		
			sion-free survival in		
			*1/*1 was found in th	ne subgroup with 1 st	
				usting ($HR_{adj} = 0.82$;	
			95% CI: 0.69-0.98) (
			was not confirmed b	y a significant inter-	
			action between 1st lin	ne and 2 nd & 3 rd line	
			(NS).		
		one of more	NS	Trend for an	
		cycles with		increased risk (p =	
		reduced irinote-		0.07) (NS)	
		can dose			
			al, there was no statis		

	1	·	1
ref. 6, continua-		heterogeneity between the studies, but there was a strong	
tion		trend for statistically significant heterogeneity for the unad-	
		justed comparison between $28/28$ and $1/1$ (p = 0.10). In	
		addition, there was significant heterogeneity for the sub-	
		groups low dose and treatment with irinotecan plus plati- num compounds for the comparison between *28/*28 and	
		*1/*1.	
		For progression-free survival, there was no statistically	
		significant heterogeneity between the studies for the com-	
		parison between *1/*28 and *1/*1, but there was moderate	
		and significant heterogeneity for the comparison between	
		*28/*28 and $*1/*1$ (p = 0.08). For the unadjusted compari-	
		son of the latter, moderate heterogeneity was also found	
		for the subgroups therapy with irinotecan and antimetabo-	
		lites and 1 st line therapy, whereas there was a trend (p =	
		0.10) for the subgroup colorectal cancer only. For the	
		adjusted comparison, there was no significant heterogene-	
		ity for the total group and the subgroups mentioned above,	
		but there was a strong and significant heterogeneity for 2 nd	
		and 3 rd line therapy.	
		There were indications for publication bias or small-study effects for the adjusted overall survival comparison of	
		*28/*28 versus *1/*1. This was attributable to the study of	
		Lara 2009, but exclusion of this study from the meta-analy-	
		sis did not substantially alter the results.	
		There were no indications of publication bias or small-	
		study effects for other comparisons.	
		8 studies were excluded from the meta-analysis, due to	
		insufficient quantitative data, but included in the systematic	
		review. None of these studies reported a difference in	
		overall and progression-free survival between genotypes	
		(NS).	
ref. 7	3	Meta-analysis of 19 studies with in total 1671 Asian patients	Authors' conclusion:
Han FF et al.		treated with irinotecan, either as combined chemotherapy or	'In conclusion, the
Associations be-		as monotherapy. Irinotecan doses in the studies varied from 50 mg/m^2 on doubt 1. 8 and 15 super 4 weaks to 250 mg/m ²	UGT1A1*6 and
tween UGT1A1*6 or UGT1A1*6/*28		50 mg/m ² on day 1, 8 and 15 every 4 weeks to 350 mg/m ² . Of the 19 studies included in the meta-analysis, 2 were also	UGT1A1*6/*28 genotypes were
polymorphisms		included separately in this risk analysis (Han 2006 and Minami	associated with an
and irinotecan-		2007).	increased risk of
induced neutro-		Of the 19 studies in this meta-analysis, 13 were included in	irinotecan-induced
penia in Asian		the meta-analysis of Chen 2014. The meta-analyses of Liu	neutropenia in Asian
cancer patients.		2014, Hu 2010 Clin Cancer Res and Hoskins 2007 did not	cancer patients.'
Cancer Chemo-		investigate Asian patients. The meta-analyses of Liu 2013,	
ther Pharmacol		Dias 2012, Hu 2010 Eur J Cancer did not investigate neutro-	
2014;73:779-88.		penia risk.	
PubMed PMID:		The comparison between *28/*28 + *6/*28 + *6/*6 and *1/*28	
24519753.		+ $\frac{1}{6} + \frac{1}{1}$ was based on 923 patients from 11 studies.	
		The comparison between $\frac{6}{6}$ and $\frac{1}{6} + \frac{1}{1}$ was based	
		on 984 patients from 7 studies.	
		Neutropenia was defined as neutropenia grade 3-4 or neutro-	
		penia grade 4. A fixed-effects model was used for the meta-analyses, becau-	
		se there was no significant heterogeneity between the studies	
		(p > 0.1). This indicates that the statistical method was chosen	
		afterwards. The search and selection strategy was transparent	
		and the data extraction was standardised.	
		The authors indicate that the quality of the included studies	
1			
		was assessed, but do not present the assessment results.	
		was assessed, but do not present the assessment results. Publication bias analyses were performed for all comparisons.	
		Publication bias analyses were performed for all comparisons.	
		Publication bias analyses were performed for all comparisons. Results:	
		Publication bias analyses were performed for all comparisons.	

not 7 continue	*00/*00 .	too /too			(0)	
ref. 7, continua-	*28/*28 + PM: E	*28/*28 +	,	95% CI: 2.15-4.98) (S)	
tion	PIVI. E	*6/*28 + *6/*6) (0)	
	PM: E	*6/*6		95% CI: 1.89-5.69		
	·			s also increased fo		
				ared to $*1/*1: OR =$		
			•	18-2.04) (S) (9 stud	dies with in	
			total 994 pa		4 .	
				ificant heterogenei	ty	
		between the s		ublication biog. U		
				bublication bias. H		
				h *1/*6 + *1/*1, the	OR was	
ref. 8	3		leaving individua	s with in total 1303	Acion	Authors' conclusion:
Chen YJ et al.	3			Irinotecan doses i		'In Asians, a com-
The association		varied from 30		IIIIOlecali uoses i		bination test of
of UGT1A1*6				e meta-analysis, 1	was also	UGT1A1*6 and
and UGT1A1*28				analysis (Minami 2		UGT1A1*28 might
with irinotecan-				nalysis, none were		be a potential bio-
induced neutro-				a-analyses of Liu 2		marker of irinotecan-
penia in Asians:				kins 2007 did not i		induced neutrope-
a meta-analysis.				ses of Liu 2013, Di		nia, an observation
Biomarkers.				stigate neutropenia		that will need addi-
2014;19:56-62.				s based on 886 pa		tional trials for con-
PubMed PMID:				+ *1/*6 and 97 *28		firmation.'
24308720.				for *28 was based		
			•	n 133 *1/*28 and 1		
		•		ed on 652 patients		
			ch 217 *1/*6 and			
				ratio OR _G was cald	culated. ORG	
				if patients with neu		
		grade 3-4 have	a higher gene v	ariant load than pa	atients	
			enia grade 3-4.			
				ed for the meta-ar		
				rotocol was not me		
				gy was transparen	it and the	
			was standardise			
			ncluded studies v			
		Publication bias	s analyses were	performed for all c	omparisons.	
		Desulta				
		Results:				
				genotype/genotyp		
			gene variants on	neutropenia risk (0	· · · · · · · · · · · · · · · · · · ·	
					% of *1/*1	
			*28/*28 and/or		with	
			*6/*28 and/or	*1/*28 and/or	neutro-	
			*6/*6	*1/*6	penia	
			x 2.5	x 1.4	24%	
	*28 + *6: E		OR _G = 2.55 (95%			
	20 + 0. E		(S).	0 01. 1.02 0.00 <i>j</i>		
				ndicates that pa-		
				penia grade 3-4		
				her gene variant		
				s without neutro-		
			penia grade 3-4.			
			x 2.1	x 1.3	25%	
				1 (95% CI: 0.94-]	
			2.97) (NS).			
			x 1.8	x 1.5	23%	
			Trend for OR _G >	1 (95% CI: 0.97-] [
			3.04) (NS).			
			However, this tre			
			much weaker (98	5% CI: 0.85-2.35)		
L						

not 0			1
ref. 8, continua-		after reducing heterogeneity to	
tion		non-significant by removal of one	
		of the studies (Onoue 2009) from the meta-analysis.	
		For *28 + *6 and for *28, the heterogeneity between the	
		studies was not significant.	
		For *6, the heterogeneity between the studies was mode-	
		rate and statistically significant.	
		There were no indications for publication bias.	
		For *28 + *6, the width of the 95% confidence interval of	
		the OR _G of each study decreased with the study publica-	
		tion year. From 2008 on, the OR _G per publication year	
		differed less than 20% with the OR _G of the subsequent	
		publication year. The number of studies per publication	
		year was maximally 3.	
ref. 9	3	A meta-analysis of 16 studies including a total of 2,328 mainly	Authors' conclusion:
Liu X et al.		Caucasian patients with colorectal cancer. Of the 16 studies	'This meta-analysis
Association of		included in the meta-analysis, 7 were also included separately	provided evidence
UGT1A1*28		in this risk analysis (Marcuello, 2004; Rouits, 2004; Carlini,	for the association
polymorphisms with irinotecan-		2005; Massacesi, 2006; Toffoli, 2006; Côté, 2007 and Kwee-	between the UGT1A1*28 poly-
induced toxicities		kel, 2008). A later publication of one study is also included in	morphism and an
in colorectal		the meta-analysis (McLeod, 2006). The outcome measure	increased risk of
cancer: a meta-		was grade 3-4 toxicity.	irinotecan-induced
analysis in		A random-effects model was used for the meta-analysis in	neutropenia and
Caucasians.		case of significant heterogeneity ($p < 0.1$). Otherwise, a fixed-	diarrhoea in colo-
Pharmacogeno-		effects model was used. This indicates that the statistical	rectal cancer. Asso-
mics J		method was chosen afterwards. The search and selection	ciations with signi-
2014;14:120-9.		strategy was transparent and the data extraction was stan- dardised.	ficant neutropenia
PubMed PMID:		The authors indicate that the quality of the included studies	were consistent and
23529007.		was evaluated based on study design, the detection method	strong. In contrast,
		of the polymorphisms, chemotherapy regimens, and grading	associations with
		systems for toxicity, but do not present quality scores for the	diarrhoea were
		studies.	weaker, and prima- rily seen when
		Publication bias analyses were performed for all comparisons	higher doses of
		and for all subgroups. In case of publication bias, a trim and fill	irinotecan were
		method was carried out for adjusting.	administrated.'
		, .	
		*1/*28 versus *1/*1:	
		- Increased risk of neutropenia (OR = 1.90; 95% CI: 1.44-	
	*1/*28: E	2.51) (S).	
		Similar results were found after correction for publication	
		bias and in the subgroups using irinotecan doses exceeding	
		150 mg/m ² and irinotecan doses lower than 150 mg/m ² .	
		There were insufficient studies using therapy without fluo-	
		rouracil to compare therapy with and without fluorouracil.	
		- No increased risk of diarrhoea (NS).	
		There was a trend towards a higher risk of diarrhoea in the	
		subgroup using irinotecan doses exceeding 150 mg/m ² .	
		+00/#00	
		*28/*28 versus *1/*1:	
		- Increased risk of neutropenia (OR = 4.79 ; 95% CI: 3.28-	
		7.01) (S).	
		Similar results were found in the subgroups using therapy	
		without fluorouracil and in those using fluorouracil-based	
		therapy and in the subgroups using irinotecan doses exceeding 150 mg/m ² (OP = 4.64) and irinotecan doses lower than	
	*28/*28: E	ding 150 mg/m ² (OR = 4.64) and irinotecan doses lower than 150 mg/m ² (OR = 6.37).	
	20/20.E	- Increased risk of diarrhoea (OR = 1.84; 95% CI: 1.24-2.72)	
		(S). (S) .	
		The increased risk of diarrhoea was only observed in studies	
		investigating irinotecan doses exceeding 150 mg/m ² (OR =	
		18	

ref. 9, continua-		2.37; 95% CI: 1.39-4.04 (S)) or in combination with fluoro-	
tion		uracil (OR = 1.78; 95% CI: 1.16-2.75 (S)). Non-fluorouracil-	
		based therapy gave a higher OR than fluorouracil-based	
		therapy, but the increase was not significant.	
		*28/*28 versus (*1/*1+*1/*28):	
		- Increased risk of neutropenia (OR = 3.44; 95% CI: 2.45-	
		4.82) (S).	
		Similar results were found in the subgroup using non-	
		fluorouracil-based therapy and the subgroup using fluoro-	
		uracil-based therapy and in the subgroups using irinotecan	
		doses exceeding 150 mg/m ² (OR = 3.34) and irinotecan	
		doses lower than 150 mg/m ² (OR = 3.63).	
		- Increased risk of diarrhoea ($OR = 1.71$; 95% CI: 1.18-2.47)	
		(S).	
		The increased risk of diarrhoea was only observed in studies	
		investigating irinotecan doses exceeding 150 mg/m ² (OR =	
		2.04; 95% CI: 1.23-3.38 (S)) or in combination with fluoro-	
		uracil (OR = 1.67; 95% CI: 1.11-2.52 (S)). Non-fluorouracil-	
		based therapy gave a higher OR than fluorouracil-based	
		therapy, but the increase was not significant.	
		N.B.1: *28 is the most common allele variant in the Caucasian	
		population.	
		N.B.2: The most common irinotecan doses used in the	
		Netherlands exceed 150 mg/m ² .	
ref. 10, kinetics	3	24 patients were treated with the maximum tolerated dose of	Authors' conclusion:
Goetz MP et al.		irinotecan once every 3 weeks in combination with oxaliplatin	'UGT1A1 genotype
UGT1A1 geno-		and capecitabine. The maximum tolerated dose was 150	affects the dose and
type-guided		mg/m ² for *1/*1 and *1/*28 and 75 or 100 mg/m ² (both n=3) for	pharmacokinetics of
phase I study of irinotecan, oxali-		*28/*28. Relevant co-medication was not excluded (although	the CAPIRINOX regimen.'
platin, and cape-		antiretroviral therapy was)	regimen.
citabine.		Constrains	Dose-corrected SN-
Invest New		Genotyping: - 9x *1/*1	38 AUC versus
Drugs		- 9x 1/ 1 - 9x *1/*28	*1/*1:
2013;31:1559-		- 9x 1/ 20 - 6x *28/*28	*1/*28: 105%
67.			*28/*28: 171%
PubMed PMID:		*1/*28 versus *1/*1:	_
24114122.	*1/*28: AA	- Dose-corrected SN-38 AUC increased by 4.6% (NS; from	Dose-corrected
	.,	2.33 to 2.44 ng.hour/mL per mg/m ²)	SN-38 AUC versus
			all genotypes: *1/*28: 88%
		*28/*28 versus *1/*1:	*28/*28: 143%
	*28/*28:	- Dose-corrected SN-38 AUC increased by 71% (NS; from	
	AA	2.33 to 3.99 ng.hour/mL per mg/m ²)	
ref. 11	3	A meta-analysis of 12 studies including a total of 1,896 mainly	Authors' conclusion:
Liu X et al.		Caucasian patients with colorectal cancer. Of the 12 studies	'UGT1A1*28 poly-
Association be-		included in the meta-analysis, 3 were also included separately	morphism cannot be
tween UGT1A1		in this risk analysis (Carlini, 2005; Toffoli, 2006 en Kweekel,	considered as a
*28 polymor-		2008). A later publication of one study is also included in the	reliable predictor of
phisms and clinical outcomes		meta-analysis (McLeod, 2006). Therapeutic response was	therapeutic respon- se and progression-
of irinotecan-		defined as partial or complete response.	free survival in
based chemothe-		A fixed-effects model was initially used for the meta-analysis,	colorectal cancer
rapies in colorec-		and confirmatory analyses with a random-effects model were	patients treated with
tal cancer: a		performed in case of potential heterogeneity. This indicates	irinotecan-based
meta-analysis in		that the statistical method was chosen afterwards. The search	chemotherapy. The
Caucasians.		and selection strategy was transparent and the data extraction	overall survival rela-
PLoS One		was standardised.	tionship with UGT
2013;8:e58489.		The authors indicate that the quality of the included studies	1A1*28 in the
PubMed PMID:		was evaluated based on study design, polymorphism detec- tion method, combination regimens, line of therapy, and	patients with lower-
23516488.		and memory, compination regimens, line of therapy, and	dose irinotecan che-

ref. 11, continu- ation		grading systems for response, but do not present quality	motherapy requires further validation.
		scores for the studies. Publication bias analyses were performed for all comparisons and for all subgroups. In case of publication bias, a trim and fill method was carried out for adjusting.	
	*1/*28: AA	 *1/*28 versus *1/*1: No difference in therapeutic response, progression-free survival and death (NS). The same results were found in the subgroups using irinotecan doses exceeding 150 mg/m² and irinotecan doses lower than 150 mg/m². 	
	*28/*28: AA	 *28/*28 versus *1/*1: No difference in therapeutic response, progression-free survival and death (NS). The same results were found on therapeutic response and progression-free survival in the subgroups using irinotecan doses exceeding 150 mg/m² and irinotecan doses lower than 150 mg/m². An increased mortality rate was found in the subgroup using irinotecan doses lower than 150 mg/m² (HR = 1.48; 95% CI: 1.06-2.07) (S). However, these results were only based on two studies, of which only the largest found an effect. *28/*28 versus (*1/*1+*1/*28): No difference in therapeutic response (NS). The same results were found in the subgroups using irinotecan doses exceeding 150 mg/m² and irinotecan doses lower than 150 mg/m². 	
		N.B.1: *28 is the most common allele variant in the Caucasian population. N.B.2: The most common irinotecan doses used in the Netherlands exceed 150 mg/m ² .	
ref. 12 Dias MM et al. Impact of the UGT1A1*28 allele on response to irinotecan: a systematic review and meta- analysis. Pharmacogeno- mics 2012;13:889-99. PubMed PMID: 22676194.	4	A meta-analysis of 12 studies including a total of 1,898 patients. Of the 12 studies included in the meta-analysis, 5 were also included separately in this risk analysis (Carlini, 2005; Han, 2006; Toffoli, 2006; Kweekel, 2008 and Liu, 2008). A later publication of one study was also included in the meta- analysis (McLeod, 2006). Eight of the twelve studies were also included in the meta-analysis by Liu 2013. Response was defined as partial or complete response. A random-effects model was used for the meta-analyses, but prospective registration of the protocol was not mentioned. The search and selection strategy was transparent and the data extraction was standardised. The authors reported which of the included studies confirmed to each of 45 quality criteria. Publication bias was analysed for all comparisons, but not for the subgroups.	Authors' conclusion: 'An individual's res- ponse to irinotecan is unlikely to be affected by UGT1A1 *28 status.'
	*1/*28: AA	*1/*28 versus *1/*1: - No difference in response (NS).	
	*28/*28: AA	*28/*28 versus *1/*1: - No difference in response (NS).	
		(*28/*28+*1/*28) versus *1/*1: - No difference in response (NS).	

ref. 12, continu-		Similar results were found in the subgroups using irinotecan	
ation		doses \geq 250 mg/m ² , 150-250 mg/m ² or < 150 mg/m ² and in the	
		subgroups of patients with colorectal cancer and lung cancer.	
ref. 13	4	A meta-analysis of 15 studies including a total of 1,998 mainly	Authors' conclusion:
Hu ZY et al.		Caucasian patients.	'The UGT1A1
Dose-dependent		Of the fifteen studies included in the meta-analysis, eight were	*28/*28 genotype
association be-		also included separately in this risk analysis (Marcuello, 2004;	was associated with
tween UGT1A1		Rouits, 2004; Carlini, 2005; Massacesi, 2006; McLeod, 2006;	an increased risk of
*28 genotype		Toffoli, 2006; Côté, 2007 and Kweekel, 2008).	neutropenia not only
and irinotecan-		Ten of the fifteen studies in this meta-analysis were also inclu-	at medium or high
induced neutro-		ded in the meta-analysis by Liu 2014.	doses of irinotecan
penia: low doses also increase		The meta-analysis of the relative extent of glucuronidation	but also at low doses. The dose-
risk.		covered 9 studies including a total of 581 patients, of which	dependent manner
Clin Cancer Res		two studies were performed among Asian patients.	of SN-38 glucuro-
2010;16:3832-		Meta-analyses were performed with a fixed-effects model.	nidation explained
42.		Since, this is only allowed in the absence of significant hetero-	why the association
PubMed PMID:		geneity, this indicates that the statistical method was chosen	between UGT1A1
20562211.		afterwards. The search and selection strategy was transparent	*28 and neutropenia
		and the data extraction was standardised.	was dose depen-
		The authors reported which of the included studies confirmed	dent.'
		to each of 28 (neutropenia) or 30 (extent of glucuronidation)	
		quality criteria.	
		Publication bias was analysed for all comparisons, but not for	
		the subgroups, except for neutropenia and dose <250 mg/m ²	
		and for neutropenia and dose 150-250 mg/m ² , which were the	
		only subgroups with 8 or more studies.	
		*1/*28 versus *1/*1:	
	*1/*28: E	- Increased risk of grade 3-4 neutropenia (RR = 1.43; 95% CI:	
	1/ 20. E	1.16-1.77) (S).	
		Similar results were found in the subgroups using irinotecan	
		doses < 150 mg/m ² (RR = 2.94) and 150-250 mg/m ² (RR =	
		1.29). The RR for irinotecan doses \geq 250 mg/m ² was based	
		on two studies and was non-significant.	
		- Decreased weighted mean difference (WMD) of the extent of	
		SN-38 glucuronidation (WMD = -1,55; 95% CI: -0.87 to -	
		2.23) (Š).	
		Similar results were found for irinotecan doses < 250 mg/m ²	
		(WMD = -1.85), but the WMD was non-significant for doses	
		\geq 250 mg/m ² .	
		There was no significant heterogeneity between the studies	
		for any of the comparisons.	
		Egger's test for publication bias was significant for neutrope-	
		nia for all investigated dose ranges (all doses, doses <250	
		mg/m ² and doses of 150-250 mg/m ²), but Begg's test was not.	
		There was no indication for publication bias for the extent of	
		glucuronidation (only investigated for all doses).	
		*00/*00	
	*00/*00 5	*28/*28 versus (*1/*1+*1/*28):	
	*28/*28: E	- Increased risk of grade 3-4 neutropenia (RR = 2.20 ; 95% CI:	
		1.82-2.66) (S).	
		Similar results were found in the subgroups using irinotecan decay (150 mg/m^2) (PR	
		doses < 150 mg/m ² (RR = 2.43) and 150-250 mg/m ² (RR = 2.00). The risk was higher in the subgroup using irrestorem	
		2.00). The risk was higher in the subgroup using irinotecan doses \ge 250 mg/m ² (RR = 7.22) than in the subgroup using	
		irinotecan doses < 250 mg/m^2 (RR = 7.22) than in the subgroup using	
		- Decreased weighted mean difference (WMD) of the extent of	
		SN-38 glucuronidation (WMD = -2.44 ; 95% CI: -1.73 to -	
		3.14) (S). The difference was greater in the subgroup using irinotecan	
		doses \geq 250 mg/m ² (WMD = -3.08) than in the subgroup	

Hu ZY et al.patients (1,263 mainly Caucasian, 497 Asian).'Patients caDose-dependent association be- tween UGT1A1- *28 polymor- phism and irino- tecan-induced diarrhoea: a meta-analysis.Of the 20 studies included in the meta-analysis, thirteen were also included separately in this risk analysis (lyer, 2002; Font, 2003; Innocenti, 2004; Marcuello, 2004; Rouits, 2004; Carlini, 2005; de Jong, 2006; Han, 2006; Massacesi, 2006; Toffoli, 2006; Côté, 2007; Kweekel, 2008 and Liu, 2008).'UGT1A1*2 are at an in risk of irino- induced separately in this meta-analysis were also only appare those who nistrated w	
There was no indication for publication bias for the extent of glucuronidation (only investigated for all doses).N.B.1: *28 is the most common allele variant in the Caucasian population.N.B.2: The most common irinotecan doses used in the Netherlands range from 180 to 350 mg/m².ref. 1414 U ZY et al. Dose-dependent association be- tween UGT1A1- *28 polymor- phism and irino- tecan-induced diarrhoea: a meta-analysis.2005; Cd Jong, 2006; Han, 2006; Massacesi, 2006; Cofté, 2007; Kweekel, 2008 and Liu, 2008).Eur J Cancer 2010; 46:1856- 65.PubMed PMID: 20335017.20335017.Hub Ly et al. publed PMID: 20335017.Ly and the mather analysis of population induced separately in the assessment results. Publication bias included in the meta-analysis by Liu 2014. Meta-analysis were performed with a fixed-effects model. Since, this is only allowed in the absence of significant heteror afterwards. The search and selection strategy was transparent and the data extraction was standardised. The authors indicate that the statistical method was chosen afterwards. The search and selection strategy was transparent and the data extraction was standardised. The authors indicate that the quality of the included studies was assessed based on study design, number of patients, source of population, mutation detection method, races, tumor types, chemotherapy regimens and grade criteria for diarrhoea, but do not present the assessment results. Publication bias was evalua- ted by visual examination for possible sekwness in funnel possible effect of publication bias was on see of a significant tegger's test. The Duval and Tweedie nonparametric trim and fill procedure was performed to further assess the possible effect of	
ref. 14 3 A meta-analysis of 20 studies including a total of 1,760 Authors' cc Hu ZY et al. 0 Patients (1,263 mainly Caucasian, 497 Asian). Authors' cc Dose-dependent association be-tween UGT1A1- 2003; Innocenti, 2004; Marcuello, 2004; Rouits, 2004; Carlini, 2003; Innocenti, 2004; Marcuello, 2004; Rouits, 2006; Tofini, 2006; Côté, 2007; Kweekel, 2008 analysis (Iyer, 2002; Font, 2006; Côté, 2007; Kweekel, 2008 analysis, 2006; Tofini, 2006; Côté, 2007; Kweekel, 2008 analysis, 2006; Tofini, 2006; Côté, 2007; Kweekel, 2008 and Liu, 2008). Authors' cc Eur J Cancer 2010;46:1856-65. Bis oncluded in the meta-analysis by Liu 2014. Meta-analyses were performed with a fixed-effects model. Increased in only apparent those who nistrated wurder of significant heterogeneity, this indicates that the statistical method was chosen afterwards. The search and selection strategy was transparent and the data extraction was standardised. The authors indicate that the quality of the included studies was assessed based on study design, number of patients, source of population, mutation detection method, races, tumour types, chemotherapy regimens and grade criteria for diarrhoea, but do not present the assessment results. Publication bias was analysed for all comparisons for '28, but not for the subgroups, except for doces ≥ 125 mgm² for all patients and for Caucasians, which were the only subgroups with 6 or more studies. Potential publication bias was analysis was not performed for "6 (only 4 studies). *1/*28 versus *1/*1: *1/*28 versus *1/*1:	
ref. 14 3 A meta-analysis of 20 studies including a total of 1,760 Authors' cc Hu ZY et al. Dose-dependent association be- Patients (1,263 mainly Caucasian, 497 Asian). Authors' cc Obse-dependent association be- issociation be- Patients (1,263 mainly Caucasian, 497 Asian). Authors' cc Yeatients (1,263 mainly Caucasian, 497 Asian). Of the 20 studies included separately in this risk analysis (lyer, 2002; Font, 2003; Innocenti, 2004; Marcuello, 2004; Rouits, 2004; Carlini, 2005; de Jong, 2006; Han, 2006; Massacesi, 2006; Coté, 2007; Kweekel, 2008 and Liu, 2008). Tisk of irino induced se included in the meta-analysis by Liu 2014. Meta-analyses Weta-analyses were performed with a fixed-effects model. Since, this is only allowed in the absence of significant hetero- only appar 20135017. Meta-analyses were performed with a fixed-effects model. The authors indicate that the statistical method was chosen afterwards. The search and selection strategy was transparent and the data extraction was standardised. The authors indicate that the quality of the included studies was assessed based on study design, number of patients, source of population, mutation detection method, races, tumour types, chemotherapy regimens and grade criteria for diarrhoea, but do not present the assessment results. Publication bias was analysed for all comparisons for *28, but not for the subgroups, except for doses ≥ 125 mg/m² for all patients and for Caucasians, which were the only subgroups with 6 or more studies. Potential publicatin bias was evalua-	
17 28. E - Increased fisk of grade 3-4 diambea (OK = 1.73, 95% CI. 1.25-2.40) (S). Similar results were found in the subgroup using irinotecan doses ≥ 125 mg/m ² (OR = 1.92; 95% CI: 1.31-2.82). The OR was significant at this dose in the subgroup of Caucasian patients, but not in the subgroup of Asian patients (two studies only). No differences were found in the subgroups using irinotecan doses < 125 mg/m ² (NS). There was no significant heterogeneity between the studies for any of the comparisons. Egger's test showed significant publication bias for Cauca- sians and dose ≥ 125 mg/m ² , but adjustment for the likely effect of bias using trim and fill gave a pooled OR of 1.74 (95% CI: 1.16-2.59; S), which is only a slight change from the estimate of 1.87 (95% CI: 1.25-2.81; S) without trim and fill.	ed severe bea. This sed risk is pparent in who are admi- ed with medi- high irinote-

(1		
ref. 14, continu-		and all doses and for all patients and doses \geq 125 mg/m ² .	
ation			
	*28/*28: E	 *28/*28 versus *1/*1: Increased risk of grade 3-4 diarrhoea (OR = 2.23; 95% CI: 1.31-3.81) (S). Similar results were found in the subgroup using irinotecan doses ≥ 125 mg/m² (OR = 3.69; 95% CI: 2.00-6.83). No differences were found in the subgroup using irinotecan doses < 125 mg/m² (NS). There were no studies investigating *28/*28 versus *1/*1 in Asian patients. Meta-regression analysis of the dependence of the OR on 	
		the dose found that the OR increased by 4.30 when the dose increased by 100 mg/m ² . This would give rise to an OR of almost 5 at a dose of 180 mg/m ² and an OR of more than 13 at a dose of 350 mg/m ² . This linear relationship was only found for *28/*28 versus *1/*1. There was no significant heterogeneity between the studies for any of the comparisons. There were no indications for publication bias for the two investigated comparisons (all doses and doses \geq 125 mg/m ²). Because all studies concerned Caucasians, there were no ethnicity subgroups.	
		*28/*28 versus (*1/*1+*1/*28): - Increased risk of grade 3-4 diarrhoea at a dose ≥ 125 mg/m ² (OR = 2.49; 95% CI: 1.42-4.36) (S). The OR was non-significant when all doses were included (NS). No differences were found in the subgroup using irinotecan doses < 125 mg/m ² (NS). There was no significant heterogeneity between the studies for any of the comparisons. There were no indications for publication bias for the two investigated comparisons (all doses and doses ≥ 125 mg/m ²). Because all studies concerned Caucasians, there were no ethnicity subgroups.	
	PM: E	 *6/*6 versus (*1/*1+*1/*6): Increased risk of grade 3-4 diarrhoea (OR = 3.54; 95% CI: 1.16-10.77) (S). The data were derived from four Asian studies. Analysis of heterogeneity between the studies was not reported. Publication bias analysis was not performed. (*1/*28+*28/*28) versus *1/*1: 	
		 Increased risk of grade 3-4 diarrhoea (OR = 1.81; 95% CI: 1.38-2.39) (S). Similar results were found in the subgroups using irinotecan doses ≥ 125 mg/m² (all patients, Caucasian patients and Asian patients). No differences were found in the subgroups using irinotecan doses < 125 mg/m² (NS). There was no significant heterogeneity between the studies for any of the comparisons. Egger's test showed significant publication bias for Caucasians and dose ≥ 125 mg/m², but adjustment for the likely effect of bias using trim and fill gave a pooled OR of 1.78 (95% CI: 1.28-2.49; S), which also indicates a significantly increased risk of toxicity (OR without trim and fill was 1.93 (95% CI: 1.38-2.70; S)). There were no indications for publication bias for all patients and all doses and for all patients and doses ≥ 125 mg/m². 	
L	l	l	

ref. 14, continu-			
ation		NOTE1: *28 is the most common allele variant in the Cauca- sian population. *6 is relatively common in Asian patients. N.B.2: The most common irinotecan doses used in the Netherlands range from 180 to 350 mg/m ² .	
ref. 15, kinetics Denlinger CS et al. Pharmacokinetic analysis of irinotecan plus bevacizumab in patients with advanced solid tumors. Cancer Chemo- ther Pharmacol 2009;65:97-105. PubMed PMID: 19415281.	4 *1/*28: A *28/*28: A	 29 patients were treated with irinotecan 180 mg/m² once every two weeks in combination with fluorouracil and folinic acid. Co-medication was excluded. Genotyping: 9x *1/*1 15x *1/*28 5x *28/*28 *1/*28 versus *1/*1: Dose-corrected SN-38 AUC_{0-48h} increased by 4.8% (S; from 1.65 to 1.73 ng.hour/mL per mg/m²) *28/*28 versus *1/*1: Dose-corrected SN-38 AUC_{0-48h} increased by 109% (S; from 1.65 to 3.45 ng.hour/mL per mg/m²) 	Authors' conclusion: 'UGT1A1 polymor- phisms were asso- ciated with variability in irinotecan phar- macokinetics.' Dose-corrected SN- 38 AUC versus *1/*1: *1/*28: 105% *28/*28: 209% Dose-corrected SN-38 AUC versus all genotypes: *1/*28: 86% *28/*28: 172%
ref. 16 Kweekel DM et al. UGT1A1*28 genotype and irinotecan dosa- ge in patients with metastatic colorectal can- cer: a Dutch Colorectal Can- cer Group study. Br J Cancer 2008;99:275-82.	3 *28/*28: E *1/*28: E	 218 patients, 80 (3x *28/*28, 31x *1/*28, 46x *1/*1) received irinotecan 350 mg/m² every three weeks, 138 (11x *28/*28, 62x *1/*28, 65x *1/*1) received irinotecan 350 mg/m² every three weeks plus capecitabine, chemotherapy regimens were fully known, but other co-medication was not, tumour evaluation was performed after every three cycles; <i>clinical endpoints</i> *1/*1 versus *1/*28 versus *28/*28: Increased prevalence of febrile neutropenia for both monotherapy and combination therapy (S; 2.2% versus 19.4% versus 0% en 1.5% versus 6.5% versus 18.2% respectively). No significant differences in the prevalence of grade 3-4 diarrhoea and the prevalence of all grade 3-4 toxicity for monotherapy or combination therapy. No significant differences in the prevalence of dose reduc- tion after cycle 1, dose per cycle and total dose for mono- therapy or combination therapy. No significant differences in the prevalence of dose reduc- tion after cycle 2 and 3 and 89% was due to gastro- intestinal toxicity). No significant differences in the prevalence of complete and partial response for monotherapy or combination therapy. No significant differences in the prevalence of complete and partial response for monotherapy or combination therapy. 	Authors' conclusion: 'We observed that the UGT1A1*28 genotype is asso- ciated with an enhanced risk of febrile neutropenia but not with IRI dose reductions. However, upfront dose reduction may result in a lower incidence of febrile neutropenia in these patients.'
ref. 17 Liu CY et al. UGT1A1*28 polymorphism predicts irinote- can-induced severe toxicities without affecting treatment outco- me and survival in patients with metastatic colo-	3 (*28/*28 + *1/*28): E	 128 patients, 6x *28/*28, 20x *1/*28, 102x *1/*1, received irinotecan 180 mg/m² every two weeks for 12 cycles as part of first-line therapy with IFL^a, other co-medication not known, median follow-up was 18 months, tumour evaluation was performed after every fourth cycle; <i>clinical endpoints</i> (*28/*28 + *1/*28) versus *1/*1: Prevalence of grade 3-4 neutropenia increased by 998% (S; from 4.9% to 53.8%). Prevalence of febrile neutropenia increased by 887% (S; from 3.9% to 38.5%). 	Authors' conclusion: 'The current data suggested that the UGT1A1*28 poly- morphism may be a key determinant for predicting irinote- can-induced severe toxicities without affecting treatment outcome for patients with metastatic colo-

		· · · · ·
	 Prevalence of diarrhoea increased by 356% (S; from 5.9% to 26.9%). Prevalence of hospitalisation for febrile neutropenia or grade 3-4 diarrhoea increased by 468% (S; from 8.8% to 50%). Prevalence of treatment-related mortality increased by 475% (S; from 2% to 11.5%). Prevalence of elevated bilirubin levels before the treatment increased by 163% (S; from 8.8% to 23.1%). Need for deep reduction increased by 222% (S; from 5.9%). 	rectal cancer.'
	 12.7% to 42.3% of the patients). Dose reduction was equally as often due to febrile neutropenia as due to intolerable diarrhoea. No significant differences in the response rate, progression-free survival and overall survival. 	
3 (*28/*28 + *1/*28): AA	 common among Asian populations. 96 patients without clinical diagnoses of Gilbert's syndrome, 58x (*28/*28 + *1/*28), 38x *1/*1, received irinotecan 80 mg/m² every week for 12 weeks in combination with either oxaliplatin or 5-fluorouracil and folic acid, other co-medication not known; <i>clinical endpoints</i> No significant association of the *28 allele with diarrhoea, anaemia, thrombocytopenia, leukopenia, loss of body weight and irinotecan dose reduction. 	Authors' conclusion: 'Our data derived from one of the largest pharmaco- genomic study cohorts of irinote- can-treated indivi- duals to date corro- borate data from different studies that have failed to find hematologic or gastrointestinal drug toxicity in patients carrying the UGT1A1*28 allele and suggest that additional risk factors may play a
3 *28/*28: E	 Meta-analysis of nine studies, of which eight have also been included in this risk analysis, 821 patients, 84x *28/*28, 737x (*1/*28 + *1/*1), irinotecan doses ranged from 80 mg/m² per week to 350 mg/m² every three weeks. Meta-analyses were performed with a random-effects model, but preregistration of the protocol (including the statistical analysis) was not mentioned. The search and selection strategy and the method of data extraction were not mentioned either. Assessment of the quality of the included studies was not reported. Publication bias was analysed by funnel plot only and for haematological toxicity and all doses only, <i>clinical endpoints</i> *28/*28 versus (*1/*28 + *1/*1): Increased risk of grade 3-4 haematological toxicity at high doses (>250 mg/m²) (S; OR = 27.8 (95% CI 4.0 - 195)). Increased risk of grade 3-4 haematological toxicity at medium doses (150-250 mg/m²) (S; OR = 3.22 (95% CI 1.52 - 6.81)). No significantly increased risk of grade 3-4 haematological toxicity at low doses (<150 mg/m²) (NS). 	factors may play a permissive role.' Authors' conclusion: 'The risk of experi- encing irinotecan- induced hematologic toxicity for patients with a UGT1A1 *28/*28 genotype thus appears to be a function of the dose of irinotecan admi- nistered.'
	(*28/*28 + *1/*28): AA	 3 Meta-analysis of nine studies, of which eight have also been included in this risk analysis, leukopenia, loss of body weight and innotecan dose reduction. 3 Meta-analysis of nine studies, of which eight have also been included in this risk analysis, set reduction. 3 Meta-analysis of nine studies, of which eight have also been included in this risk analysis, set reduction. 28/*28: E 23/*28*28: E 23/*28*28: E 28/*28*E 28/*

rof 10 continu	٨٨	dept of dose (NS)]
ref. 19, continu- ation	AA	dent of dose (NS). There was no heterogeneity between the studies (most proba- bly only tested for grade 3-4 haematological toxicity and all doses). There was no evidence for publication bias for the only investi- gated comparison: grade 3-4 haematological toxicity and all doses.	
ref. 20 Minami H et al. Irinotecan phar- macokinetics/ pharmacodyna- mics and UGT1A genetic polymor- phisms in Japa- nese: roles of UGT1A1*6 and *28. Pharmacogenet Genomics 2007;17:497- 504.	3 IM: E PM: E	 176 patients, 4x *28/*28, 26x *1/*28, 55x *1/*1, 5x *6/*6, 32x *1/*6, 7x *6/*28, 5x *60/*60, 25x *1/*60, 9x *6/*60, 8x *28/*60, received monotherapy (n = 56) or combination therapy with irinotecan, doses of irinotecan ranged from 100 mg/m² per week to 150 mg/m² every three weeks. Association of genotype with AUC was determined for all patients, association with toxicity only for patients using monotherapy. The effect of *28 and *6 on AUC was similar. <i>clinical endpoints</i> 0 versus 1 versus 2 *28 or *6 alleles: - Increased incidence of grade 3-4 neutropenia (S; 14% versus 24% versus 80%). - No association with the incidence of diarrhoea. <i>kinetic endpoints</i> *1/*28 versus *1/*1: - Median SN-38G/SN-38 AUC ratio decreased by 40% (S; from 6.13 to 3.65). 1x (*28 or *6) versus *1/*1: - Dose-corrected SN-38 AUC ratio decreased non-significantly by 40% (NS; from 6.13 to 3.65). 2x (*28 or *6) versus *1/*1: - Median SN-38G/SN-38 AUC ratio decreased non-significantly by 40% (NS; from 6.13 to 3.65). 2x (*28 or *6) versus *1/*1: - Dose-corrected SN-38 AUC ratio decreased non-significantly by 40% (NS; from 6.13 to 3.65). 2x (*28 or *6) versus *1/*1: - Dose-corrected SN-38 AUC increased by 140% (S; determined from the slope of the regression line). *1/*1 versus *28/*1 versus *28/*28: - Significant gene-dose effect of the *28 allele on the median SN-38G/SN-38 AUC ratio (S). N.B.: Genotyping was performed for the most common alleles in Asian populations (*6, *28 and *60). The effect of *60 and *1 on metabolic ratio was not significantly different. 	Authors' conclusion: 'The haplotypes significantly asso- ciated with reduced area under concen- tration curve ratios and neutropenia contained UGT1A1 *6 or *28, and both of them should be genotyped before irinotecan is given to Japanese and probably other Asian patients.'
ref. 21 Stewart CF et al. UGT1A1 promo- ter genotype correlates with SN-38 pharma- cokinetics, but not severe toxi- city in patients receiving low- dose irinotecan. J Clin Oncol 2007;25:2594- 600.	3 *28/*28: AA *1/*28: AA	 72 paediatric patients, 9x *28/*28, 36x *1/*28, 27x *1/*1, received oral or intravenous irinotecan doses ranging from 15-75 mg/m² per day 5 days/week for two weeks as monotherapy or as combination therapy. <i>clinical endpoints</i> No association of *28 with the incidence of grade 3-4 neutropenia or diarrhoea. Bilirubin levels before treatment were elevated in *28/*28 patients (S; from 0.3-0.4 to 0.6 mg/dL). <i>kinetic endpoints</i> *1/*1 versus *28/*1 versus *28/*28: Increased SN-38 AUC (NS). Decreased SN-38G/SN-38 AUC ratios (NS). 	Authors' conclusion: 'Severe toxicity was not increased in pediatric patients with the 7/7 geno- type when treated with a low-dose protracted schedule of irinotecan. There- fore, UGT1A1 geno- typing is not a useful prognostic indicator of severe toxicity for patients treated with this irinotecan dosa- ge and schedule.'

	1		
ref. 22 Côté JF et al. UGT1A1 poly- morphism can predict hemato- logic toxicity in patients treated with irinotecan. Clin Cancer Res 2007;13:3269- 75.	3 *28/*28: E *1/*28: E	 Prospective study, 89 patients, 8x *28/*28, 44x *1/*28, 37x *1/*1, received irinotecan 180 mg/m² every two weeks for twelve cycles in FOLFIRI^a regimen. <i>clinical endpoints</i> *28/*28 versus *1/*1: Increased incidence of grade 3-4 haematological toxicity by 209% (NS; from 16.2% to 50%). *28/28 versus *1/*28 versus *1/*1: Increased incidence of grade 3-4 haematological toxicity (NS; 50% versus 25% versus 16.2%). Increased incidence of grade 3-4 neutropenia (S; 50% versus 23% versus 13.5%). No significant differences in the incidence of grade 3-4 gastrointestinal toxicity. No differences in median dose. Increased incidence of disease-free survival at 3 years (NS; 87% versus 52% versus 42%) 	Authors' conclusion: 'This study supports the clinical utility of identification of UGT1A1 promoter polymorphisms before LV5FU2 + CPT-11 treatment to predict early hema- tologic toxicity. The - 3156G>A polymor- phism seems to be a better predictor than the UGT1A1 (TA)6TAA>(TA)7TA A polymorphism.'
ref. 23 Ramchandani RP et al. The role of SN- 38 exposure, UGT1A1*28 polymorphism, and baseline bilirubin level in predicting severe irinotecan toxici- ty. J Clin Pharmacol 2007;47:78-86.	3 *28/*28: E *1/*28: A	 87% versus 52% versus 42%). Pooled analysis of the data from Innocenti et al. and Iyer et al., 81 patients, 10x *28/*28, 32x *1/*28, 39x *1/*1, received irinotecan 300 or 350 mg/m² every three weeks. Toxicity data from the 1st cycle were analysed. <i>clinical endpoints</i> A higher SN-38 AUC and the *28/*28 genotype were significantly associated with lower trough neutrophil counts (S). They both had significantly independent effects on trough neutrophil counts and together accounted for 49% of the variation. A model including the *28 allele only accounted for 22% of the variation. An alternative model showed that elevated bilirubin levels before treatment and the *28/*28 genotype showed significant associations with lower trough neutrophil counts (S). Together they accounted for 31% of the variation. <i>kinetic endpoints</i> Increased dose-corrected SN-38 AUC for both *1/*28 and *28/*28 versus *1/*1 (S). The genotypes accounted for approximately 10% of the variation in SN-38 AUC. 	Authors' conclusion: 'This model can be used to predict the magnitude of decrease in absolute neutrophil count, which can guide safer dosing regimens of irino- tecan. However, we believe that the model could be further refined to have greater predic- tive power and better clinical utility.'
ref. 24 Zárate Romero R et al. Potential applica- tion of GSTT1- null genotype in predicting toxicity associated to 5- fluouracil irinote- can and leucovo- rin regimen in advanced stage colorectal cancer patients. Oncol Rep 2006;16:497- 503.	3 *1/*28: AA	 51 patients, 26x *1/*28, 21x *1/*1, received irinotecan 180 mg/m² every two weeks in combination with 5-fluorouracil and folinic acid for a median five cycles. <i>clinical endpoints</i> No association of the *28 allele with grade 3 haematological toxicity (NS). No association of the *28 allele with grade 3 gastrointestinal toxicity (NS). Grade 4 toxicity was not found in this study, 78% of the grade 3 toxicity concerned gastrointestinal toxicity. 	Authors' conclusion: 'Patients with the UGT1A1*28 allele may develop toxicity easily after irinote- can chemotherapy. In our treatment schedule, this rela- tion was not obser- ved.'
ref. 25 de Jong FA et al. Prophylaxis of irinotecan-indu- ced diarrhea with	3	Prospective study, 52 patients, 3x *28/*28, 23x *1/*28, 26x *1/*1, received irinotecan 350 mg/m ² every three weeks in combination with neomycin or placebo. Pharmacokinetic parameters were determined for 43 patients, 2x *28/*28, 19x *1/*28, 21x *1/*1. Relevant foods and CYP3A inhibitors or	Authors' conclusion: 'It is suggested that the UGT1A1*28 genotype status could be used as a

neomycin and potential role for UGT1A1*28 genotype scree- ning: a double- blind, randomi- zed, placebo- controlled study. Oncologist 2006;11:944-54. ref. 25, continu- ation	(*28/*28 + *1/*28): D	 inducers were excluded, apart from prophylactic anti-emetics. Neomycin did not affect irinotecan toxicity or pharmacokinetics. <i>clinical endpoints</i> (*28/*28 + *1/*28) versus *1/*1: The incidence of grade 2-3 diarrhoea increased by 100% (S; from 34.6% to 69.2%). The incidence of grade 0-1 diarrhoea decreased by 53% (S; from 65.4% to 30.8%). No difference in the incidence of grade 3-4 neutropenia (NS). No significant decrease in trough neutrophil counts (NS). 	screening tool for a priori prevention of irinotecan-induced delayed-type diar- rhea.' SN-38 clearance versus *1/*1: *1/*28: 63% *28/*28: 39% SN-38 clearance versus all geno-
		 kinetic endpoints *1/*1 versus *28/*1 versus *28/*28: Decreased median SN-38 metabolic clearance (S; from 1268 to 804 to 489 L/h). 	types: *1/*28: 79% *28/*28: 48%
ref. 26 Toffoli G et al. The role of UGT1A1*28 polymorphism in the pharmaco- dynamics and pharmacokinetics of irinotecan in patients with metastatic colo- rectal cancer. J Clin Oncol 2006;24:3061-8.	3 *28/*28: E *28/*28: AA# *1/*28: A	 Prospective study, 250 patients, 22x *28/*28, 114x *1/*28, 114x *1/*1, irinotecan 180 mg/m² every two weeks in FOLFIRI^a regimen, other co-medication not known; <i>clinical endpoints</i> 1st cycle: significant association between *28 allele and grade 3-4 haematological toxicity, no association with nonhaematological toxicity (including diarrhoea). Entire treatment (dose adjusted to adverse events): no association between *28 allele and toxicity or dose reduction. *28/*28: During 1st cycle: OR severe haematological toxicity versus *1/*1 was 8.63 (95% CI 1.31-56.55), non-haematological toxicity OR = 4.10 (95% CI 0.86-19.55). Throughout entire treatment: haematological toxicity OR = 1.97 (95% CI 0.56-6.99), non-haematological toxicity OR = 1.97 (95% CI 0.45-4.47). No significant difference in dose reduction versus *1/*1 (from 17.5% to 18.2%). Significant decrease in the risk of progressive/stable disease and progression versus *1/*1, OR = 0.32 (95% CI 0.12-0.86) and 0.19 (95% CI 0.04-0.89) respectively. There was no significant increase in overall survival. *1/*28: During 1st cycle: OR severe haematological toxicity versus *1/*1 was 3.47 (95% CI 0.15-2.75). Throughout entire treatment: haematological toxicity OR = 1.93 (95% CI 0.53-2.24). The incidence of dose reduction increased from 17.5% to 23.2% versus *1/*1 (NS by 33%). The risk of progressive/stable disease and progression decreased non-significantly versus *1/*1, OR = 0.92 (95% CI 0.53-1.56) and 0.77 (95% CI 0.42-1.39) respectively. <i>kinetic endpoints</i> Significant correlation between the *28 allele and a lower SN-38G/SN-38 AUC ratio or a higher irinotecan AUC x (SN-38/SN-386). These kinetic parameters also significantly differ between the group with and the group without serious toxicity. 	Authors' conclusion: 'The results indicate that UGT1A1*28 polymorphism is of some relevance to toxicity; however, it is less important than discussed in previous smaller trials. In particular, the possibility of a dose reduction for irinotecan in patients with a UGT1A1*28 polymorphism is not supported by the result of this analysis.' 'The observed increased response rate in patients with lower GR and increased BI (indi- cative of a bioche- mical effect of a re- duced UGT enzyme activity) and the trend towards increased tumor response and survival in *28/*28 patients suggest the need for careful consideration before irinotecan dose reduction in patients carrying the poly- morphic *28 allele is recommended.'
ref. 27 Han JY et al. Comprehensive analysis of	3	81 patients, irinotecan 80 mg/m ² on day 1 (+cisplatin) and day 8 of 3-weekly cycles, other co-medication not known; *28:	

			1
UGT1A polymor- phisms predictive for pharmacoki- netics and treat- ment outcome in patients with non-small-cell lung cancer trea- ted with irinote- can and cisplatin. J Clin Oncol 2006;24:2237- 44. ref. 27, continu- ation	*1/*28: AA *1/*6: A	 Genotyping: 12x *28/*1, 69x *1/*1 kinetic endpoints *28/*1: SN-38G/SN-38 AUC ratio versus *1/*1 increased from 10.9 to 14.9 (NS by 37%). <i>clinical endpoints</i> *28/*1: no differences in tumour response, toxicity or dose versus *1/*1. *6: Genotyping: 6x *6/*6, 26x *1/*6, 49x *1/*1 kinetic endpoints *6/*6: SN-38 AUC increased from 113.9 to 200.4 ng.hour/ mL versus *1/*1 (S by 76%). *1/*6: SN-38 AUC increased from 113.9 to 126.7 ng.hour/ mL versus *1/*1 (S by 11%). *6/*6 : no difference in the weekly irinotecan dose (in mg/m²/week) versus (*1/*6+*1/*1) (NS) <i>clinical endpoints (*6/*6 versus (*1/*6+*1/*1)</i>) The percentage of responders decreased from 50% to 0% (S) 	
	*6/*6: E	 Decreased progression-free survival (S) and overall survival (S) The percentage of patients with grade 4 neutropenia increased from 24% to 67% (S by a factor 2.8) No difference in the percentage of patients with grade 3 diarrhoea (NS) 	
ref. 28	3	520 patients, 212 received irinotecan 100-125 mg/m ² once	
McLeod HL et al. UGT1A1*28, toxicity and out- come in advan- ced colorectal cancer: results from Trial N9741. J Clin Oncol 2006;24 (suppl. abstr. 3520).	*28/*28: E *1/*28: E	 S20 patients, 212 received infotecan 100-125 mg/m² offce weekly, 109x in IFL^a regimen (11x *28/*28, 54x *1/*28, 44x *1/*1), 103x in IROX^b regimen, other co-medication not known; *28/*28: the incidence of grade 4 neutropenia with IROX regimen increased significantly from 9.6% to 54.5% versus *1/*1 (S by 468% and OR 15.3, 95% CI 3-78); this increase was non-significant with the IFL regimen (from 6.8% to 18.2%, NS by 168%). *1/*28: the incidence of grade 4 neutropenia with IROX regimen increased significantly from 9.6% to 15.0% versus *1/*1 (S by 56%); this increase was non-significant with the IFL regimen (from 9.6% to 15.0% versus *1/*1 (S by 56%); this increase was non-significant with the IFL regimen (from 6.8% to 11.1%, NS by 63%). 	
		response, time to progression or overall survival.	
ref. 29 Massacesi C et al. Uridine diphos- phate glucurono- syl transferase 1A1 promoter polymorphism predicts the risk of gastrointesti- nal toxicity and fatigue induced by irinotecan- based chemothe- rapy. Cancer	3 *28/*28: E *1/*28: F	 56 patients, 7x *28/*28, 22x *1/*28, 27x *1/*1, irinotecan 80 mg/m² weekly and raltitrexed every three weeks, other comedication not known; *28/*28 + *1/*28: significant increase versus *1/*1 in the incidence of diarrhoea, nausea and fatigue, no increase in neutropenia and liver toxicity. Genotype has no predictive power for response, time to disease progression or overall survival. A patient with the *1/*28 genotype died of kidney failure due to severe diarrhoea and vomiting in combination with haematological toxicity. 	
2006;106:1007- 16.			

ref. 30 Wright MA et al. A phase I phar- macologic and pharmacogenetic	3	32 patients, 30x genotyped, 3x *28/*37,18x *1/*28, 9x *1/*1, irinotecan 70-140 mg/m ² every two weeks, folinic acid and 5- FU, other co-medication not known;	
trial of sequential 24-hour infusion of irinotecan fol- lowed by leuco- vorin and a 48- hour infusion of fluorouracil in adult patients with solid tumors. Clin Cancer Res 2005;11:4144- 50.	*28/*37: A *1/*28: A	 *28/*37 + *1/*28: significantly increased SN-38/SN-38G AUC ratio versus *1/*1. 	
ref. 31 Kweekel DM et al.	3	8 patients, 1x *28/*28, 2x *1/*28, 5x *1/*1, irinotecan+capeci- tabine doses not known, other co-medication not known;	Subpopulation of the CAIRO study by Dutch Colorectal
Ondersteuning van de chemo- therapiekeuze [Support for choice of chemo- therapy]. Pharm Weekblad 2005;20:685-7.	*28/*28: D *1/*28: D	 *28/*28: no response, ≥ grade 3 toxicity. *1/*28: 1 patient responded while another did not. Both < grade 3 toxicity. *1/*1: response in 3 in 5 patients, 1 patient had ≥ grade 3 toxicity, other 4 < grade 3. 	Cancer Group.
ref. 32 Steiner M et al. 5-fluorouracil/ irinotecan indu- ced lethal toxicity as a result of a combined phar- macogenetic syndrome: report of a case. J Clin Pathol 2005;58:553-5.	1 *1/*28: F	Female patient received irinotecan 80 mg/m ² weekly + 5-FU, folinic acid. The dose was reduced due to adverse events (grade 2 nausea, grade 1 leukopenia) after the second cycle. Severe diarrhoea and grade 4 neutropenia occurred. The patient developed sepsis and died. Genotyping: *1/*28 and heterozygous DPD*2A.	
ref. 33 Soepenberg O et al.	3	25 patients of which 23 were genotyped, 1x *28/*28, 8x *1/*28, 13x *1/*1, 1x *36/*1, oral irinotecan 70-80 mg/m ² on days 1 to 5 of three-weekly cycles, co-medication not known;	
Phase I pharma- cokinetic, food effect, and phar- macogenetic study of oral irinotecan given as semisolid matrix capsules in patients with solid tumors. Clin Cancer Res 2005;11:1504- 11.	*28/*28: A *1/*28: A	*28 allele had a significant effect on SN-38 Cmax. No difference in toxicity.	
ref. 34 Zhou Q et al. Pharmacogenetic profiling across the irinotecan pathway in Asian	3 *28/*28: AA *1/*28: AA	29 patients, 11% *28, oral irinotecan 100 mg/m ² weekly, co- medication not known; The UGT1A1 genotype did not have a significant effect on kinetic parameters of irinotecan, SN-38 or SN-38G.	
patients with cancer.	1/ ZO. AA		

Br J Clin Phar-		N.B.: No genotyping was performed for the *6 allele, which is	
macol		common among Asian populations.	
2005;59:415-24.			
ref. 35	3	67 patients, 1x *36/*1, 1x *36/*37, 28x *1/*1, 29x *1/*28, 1x	
Carlini LE et al.	-	*1/*37, 5x *28/*28, 1x *28/*37, irinotecan 100-125 mg/m ² +	
UGT1A7 and		capecitabine on days 1 and 8 of three-weekly cycles, other co-	
UGT1A9 poly-		medication not known;	
morphisms pre-			
dict response	*20/*20.	No significant appreciation between sensitive and two out	
and toxicity in	*28/*28:	- No significant association between genotype and tumour	
colorectal cancer	AA	response, but there was a trend towards a better response	
patients treated	*28/*37:	in patients with low enzyme activity (*28/*28 and *28/*37)	
with capecitabi-	AA	compared to those with high enzyme activity (*36/*1 and	
ne/irinotecan.		*1/*1), by 83% and 46% respectively.	
		- No significant association between genotype and toxicity,	
Clin Cancer Res		none of the six patients with low enzyme activity had toxic	
2005;11:1226-		adverse events.	
36.			
ref. 36	3	119 patients, 7x *28/*28, 17x *1/*28, 95x *1/*1, irinotecan	
Kitagawa C et al.		dose not known, co-medication not known;	
Genetic polymor-			
phism in the phe-	*28/*28: E	- *28/*28: significant association between genotype and the	
nobarbital-res-		occurrence of severe toxicity, leukopenia and/or diarrhoea	
ponsive enhan-		(OR 5.33, 95% CI 2.02-14.1).	
cer module of the			
UDP-glucurono-		N.B.: No genotyping was performed for the *6 allele, which is	
syltransferase		common among Asian populations.	
1A1 gene and			
irinotecan toxici-			
ty.			
Pharmacogenet			
Genomics			
2005;15:35-41.	3	95 patients 10x *28/*28 45x *1/*28 40x *1/*1 one of the follo-	
2005;15:35-41. ref. 37	3	95 patients 10x *28/*28, 45x *1/*28, 40x *1/*1, one of the follo- wing four regimens: irinotecan 350 mg/m ² every three weeks	
2005;15:35-41. ref. 37 Marcuello E et al.	3	wing four regimens: irinotecan 350 mg/m ² every three weeks,	
2005;15:35-41. ref. 37 Marcuello E et al. UGT1A1 gene	3	wing four regimens: irinotecan 350 mg/m ² every three weeks, irinotecan 350 mg/m ² every three weeks + raltitrexed, irinote-	
2005;15:35-41. ref. 37 Marcuello E et al. UGT1A1 gene variations and	3	wing four regimens: irinotecan 350 mg/m ² every three weeks, irinotecan 350 mg/m ² every three weeks + raltitrexed, irinotecan 80 mg/m ² once weekly + 5-FU, irinotecan 180 mg/m ²	
2005;15:35-41. ref. 37 Marcuello E et al. UGT1A1 gene variations and irinotecan treat-	3	wing four regimens: irinotecan 350 mg/m ² every three weeks, irinotecan 350 mg/m ² every three weeks + raltitrexed, irinote- can 80 mg/m ² once weekly + 5-FU, irinotecan 180 mg/m ² every two weeks + 5-FU+levofolinic acid, other co-medication	
2005;15:35-41. ref. 37 Marcuello E et al. UGT1A1 gene variations and irinotecan treat- ment in patients	3	wing four regimens: irinotecan 350 mg/m ² every three weeks, irinotecan 350 mg/m ² every three weeks + raltitrexed, irinotecan 80 mg/m ² once weekly + 5-FU, irinotecan 180 mg/m ²	
2005;15:35-41. ref. 37 Marcuello E et al. UGT1A1 gene variations and irinotecan treat- ment in patients with metastatic	3	wing four regimens: irinotecan 350 mg/m ² every three weeks, irinotecan 350 mg/m ² every three weeks + raltitrexed, irinote- can 80 mg/m ² once weekly + 5-FU, irinotecan 180 mg/m ² every two weeks + 5-FU+levofolinic acid, other co-medication not known;	
2005;15:35-41. ref. 37 Marcuello E et al. UGT1A1 gene variations and irinotecan treat- ment in patients with metastatic colorectal can-		 wing four regimens: irinotecan 350 mg/m² every three weeks, irinotecan 350 mg/m² every three weeks + raltitrexed, irinotecan 80 mg/m² once weekly + 5-FU, irinotecan 180 mg/m² every two weeks + 5-FU+levofolinic acid, other co-medication not known; *28/*28: significant increase versus *1/*1 in the incidence 	
2005;15:35-41. ref. 37 Marcuello E et al. UGT1A1 gene variations and irinotecan treat- ment in patients with metastatic colorectal can- cer.	3 *28/*28: E	 wing four regimens: irinotecan 350 mg/m² every three weeks, irinotecan 350 mg/m² every three weeks + raltitrexed, irinotecan 80 mg/m² once weekly + 5-FU, irinotecan 180 mg/m² every two weeks + 5-FU+levofolinic acid, other co-medication not known; *28/*28: significant increase versus *1/*1 in the incidence of diarrhoea [from 17% to 70% (S by 312%)] and asthenia 	
2005;15:35-41. ref. 37 Marcuello E et al. UGT1A1 gene variations and irinotecan treat- ment in patients with metastatic colorectal can- cer. Br J Cancer		 wing four regimens: irinotecan 350 mg/m² every three weeks, irinotecan 350 mg/m² every three weeks + raltitrexed, irinotecan 80 mg/m² once weekly + 5-FU, irinotecan 180 mg/m² every two weeks + 5-FU+levofolinic acid, other co-medication not known; *28/*28: significant increase versus *1/*1 in the incidence of diarrhoea [from 17% to 70% (S by 312%)] and asthenia [from 25% to 70% (S by 180%)]. Non-significant increase 	
2005;15:35-41. ref. 37 Marcuello E et al. UGT1A1 gene variations and irinotecan treat- ment in patients with metastatic colorectal can- cer.		 wing four regimens: irinotecan 350 mg/m² every three weeks, irinotecan 350 mg/m² every three weeks + raltitrexed, irinotecan 80 mg/m² once weekly + 5-FU, irinotecan 180 mg/m² every two weeks + 5-FU+levofolinic acid, other co-medication not known; *28/*28: significant increase versus *1/*1 in the incidence of diarrhoea [from 17% to 70% (S by 312%)] and asthenia [from 25% to 70% (S by 180%)]. Non-significant increase in grade 3-4 haematological toxicity from 15% to 40% (NS 	
2005;15:35-41. ref. 37 Marcuello E et al. UGT1A1 gene variations and irinotecan treat- ment in patients with metastatic colorectal can- cer. Br J Cancer		 wing four regimens: irinotecan 350 mg/m² every three weeks, irinotecan 350 mg/m² every three weeks + raltitrexed, irinotecan 80 mg/m² once weekly + 5-FU, irinotecan 180 mg/m² every two weeks + 5-FU+levofolinic acid, other co-medication not known; *28/*28: significant increase versus *1/*1 in the incidence of diarrhoea [from 17% to 70% (S by 312%)] and asthenia [from 25% to 70% (S by 180%)]. Non-significant increase 	
2005;15:35-41. ref. 37 Marcuello E et al. UGT1A1 gene variations and irinotecan treat- ment in patients with metastatic colorectal can- cer. Br J Cancer		 wing four regimens: irinotecan 350 mg/m² every three weeks, irinotecan 350 mg/m² every three weeks + raltitrexed, irinotecan 80 mg/m² once weekly + 5-FU, irinotecan 180 mg/m² every two weeks + 5-FU+levofolinic acid, other co-medication not known; *28/*28: significant increase versus *1/*1 in the incidence of diarrhoea [from 17% to 70% (S by 312%)] and asthenia [from 25% to 70% (S by 180%)]. Non-significant increase in grade 3-4 haematological toxicity from 15% to 40% (NS 	
2005;15:35-41. ref. 37 Marcuello E et al. UGT1A1 gene variations and irinotecan treat- ment in patients with metastatic colorectal can- cer. Br J Cancer		 wing four regimens: irinotecan 350 mg/m² every three weeks, irinotecan 350 mg/m² every three weeks + raltitrexed, irinotecan 80 mg/m² once weekly + 5-FU, irinotecan 180 mg/m² every two weeks + 5-FU+levofolinic acid, other co-medication not known; *28/*28: significant increase versus *1/*1 in the incidence of diarrhoea [from 17% to 70% (S by 312%)] and asthenia [from 25% to 70% (S by 180%)]. Non-significant increase in grade 3-4 haematological toxicity from 15% to 40% (NS by 167%). UGT1A1 genotype is the only variable associa- 	
2005;15:35-41. ref. 37 Marcuello E et al. UGT1A1 gene variations and irinotecan treat- ment in patients with metastatic colorectal can- cer. Br J Cancer		 wing four regimens: irinotecan 350 mg/m² every three weeks, irinotecan 350 mg/m² every three weeks + raltitrexed, irinotecan 80 mg/m² once weekly + 5-FU, irinotecan 180 mg/m² every two weeks + 5-FU+levofolinic acid, other co-medication not known; *28/*28: significant increase versus *1/*1 in the incidence of diarrhoea [from 17% to 70% (S by 312%)] and asthenia [from 25% to 70% (S by 180%)]. Non-significant increase in grade 3-4 haematological toxicity from 15% to 40% (NS by 167%). UGT1A1 genotype is the only variable associated with severe diarrhoea. No difference in overall survival. 	
2005;15:35-41. ref. 37 Marcuello E et al. UGT1A1 gene variations and irinotecan treat- ment in patients with metastatic colorectal can- cer. Br J Cancer	*28/*28: E	 wing four regimens: irinotecan 350 mg/m² every three weeks, irinotecan 350 mg/m² every three weeks + raltitrexed, irinotecan 80 mg/m² once weekly + 5-FU, irinotecan 180 mg/m² every two weeks + 5-FU+levofolinic acid, other co-medication not known; *28/*28: significant increase versus *1/*1 in the incidence of diarrhoea [from 17% to 70% (S by 312%)] and asthenia [from 25% to 70% (S by 180%)]. Non-significant increase in grade 3-4 haematological toxicity from 15% to 40% (NS by 167%). UGT1A1 genotype is the only variable associated with severe diarrhoea. No difference in overall survival. *1/*28: significant increase versus *1/*1 in the incidence of a significant increase versus *1/*1 in the incidence of 0.000 (NS by 167%). 	
2005;15:35-41. ref. 37 Marcuello E et al. UGT1A1 gene variations and irinotecan treat- ment in patients with metastatic colorectal can- cer. Br J Cancer		 wing four regimens: irinotecan 350 mg/m² every three weeks, irinotecan 350 mg/m² every three weeks + raltitrexed, irinotecan 80 mg/m² once weekly + 5-FU, irinotecan 180 mg/m² every two weeks + 5-FU+levofolinic acid, other co-medication not known; *28/*28: significant increase versus *1/*1 in the incidence of diarrhoea [from 17% to 70% (S by 312%)] and asthenia [from 25% to 70% (S by 180%)]. Non-significant increase in grade 3-4 haematological toxicity from 15% to 40% (NS by 167%). UGT1A1 genotype is the only variable associated with severe diarrhoea. No difference in overall survival. *1/*28: significant increase versus *1/*1 in the incidence of diarrhoea [from 17% to 33% (S by 94%)] and asthenia 	
2005;15:35-41. ref. 37 Marcuello E et al. UGT1A1 gene variations and irinotecan treat- ment in patients with metastatic colorectal can- cer. Br J Cancer	*28/*28: E	 wing four regimens: irinotecan 350 mg/m² every three weeks, irinotecan 350 mg/m² every three weeks + raltitrexed, irinotecan 80 mg/m² once weekly + 5-FU, irinotecan 180 mg/m² every two weeks + 5-FU+levofolinic acid, other co-medication not known; *28/*28: significant increase versus *1/*1 in the incidence of diarrhoea [from 17% to 70% (S by 312%)] and asthenia [from 25% to 70% (S by 180%)]. Non-significant increase in grade 3-4 haematological toxicity from 15% to 40% (NS by 167%). UGT1A1 genotype is the only variable associated with severe diarrhoea. No difference in overall survival. *1/*28: significant increase versus *1/*1 in the incidence of diarrhoea [from 17% to 33% (S by 94%)] and asthenia [from 25% to 38% (S by 52%)]. Non-significant increase in grade 35% to 38% (S by 52%)]. Non-significant increase in grade 35% to 38% (S by 52%)]. 	
2005;15:35-41. ref. 37 Marcuello E et al. UGT1A1 gene variations and irinotecan treat- ment in patients with metastatic colorectal can- cer. Br J Cancer	*28/*28: E	 wing four regimens: irinotecan 350 mg/m² every three weeks, irinotecan 350 mg/m² every three weeks + raltitrexed, irinotecan 80 mg/m² once weekly + 5-FU, irinotecan 180 mg/m² every two weeks + 5-FU+levofolinic acid, other co-medication not known; *28/*28: significant increase versus *1/*1 in the incidence of diarrhoea [from 17% to 70% (S by 312%)] and asthenia [from 25% to 70% (S by 180%)]. Non-significant increase in grade 3-4 haematological toxicity from 15% to 40% (NS by 167%). UGT1A1 genotype is the only variable associated with severe diarrhoea. No difference in overall survival. *1/*28: significant increase versus *1/*1 in the incidence of diarrhoea [from 17% to 33% (S by 94%)] and asthenia [from 25% to 38% (S by 52%)]. Non-significant increase in grade 3-4 haematological toxicity from 15% to 27% (NS by 52%)]. 	
2005;15:35-41. ref. 37 Marcuello E et al. UGT1A1 gene variations and irinotecan treat- ment in patients with metastatic colorectal can- cer. Br J Cancer 2004;91:678-82.	*28/*28: E *1/*28: E	 wing four regimens: irinotecan 350 mg/m² every three weeks, irinotecan 350 mg/m² every three weeks + raltitrexed, irinotecan 80 mg/m² once weekly + 5-FU, irinotecan 180 mg/m² every two weeks + 5-FU+levofolinic acid, other co-medication not known; *28/*28: significant increase versus *1/*1 in the incidence of diarrhoea [from 17% to 70% (S by 312%)] and asthenia [from 25% to 70% (S by 180%)]. Non-significant increase in grade 3-4 haematological toxicity from 15% to 40% (NS by 167%). UGT1A1 genotype is the only variable associated with severe diarrhoea. No difference in overall survival. *1/*28: significant increase versus *1/*1 in the incidence of diarrhoea [from 17% to 33% (S by 94%)] and asthenia [from 25% to 38% (S by 52%)]. Non-significant increase in grade 3-4 haematological toxicity from 15% to 27% (NS by 80%). No difference in overall survival. 	
2005;15:35-41. ref. 37 Marcuello E et al. UGT1A1 gene variations and irinotecan treat- ment in patients with metastatic colorectal can- cer. Br J Cancer 2004;91:678-82. ref. 38	*28/*28: E	 wing four regimens: irinotecan 350 mg/m² every three weeks, irinotecan 350 mg/m² every three weeks + raltitrexed, irinotecan 80 mg/m² once weekly + 5-FU, irinotecan 180 mg/m² every two weeks + 5-FU+levofolinic acid, other co-medication not known; *28/*28: significant increase versus *1/*1 in the incidence of diarrhoea [from 17% to 70% (S by 312%)] and asthenia [from 25% to 70% (S by 180%)]. Non-significant increase in grade 3-4 haematological toxicity from 15% to 40% (NS by 167%). UGT1A1 genotype is the only variable associated with severe diarrhoea. No difference in overall survival. *1/*28: significant increase versus *1/*1 in the incidence of diarrhoea [from 17% to 33% (S by 94%)] and asthenia [from 25% to 38% (S by 52%)]. Non-significant increase in grade 3-4 haematological toxicity from 15% to 27% (NS by 80%). No difference in overall survival. 75 patients, 7x *28/*28, 35x *1/*28, 31x *1/*1, 2x *36/*1 or 	
2005;15:35-41. ref. 37 Marcuello E et al. UGT1A1 gene variations and irinotecan treat- ment in patients with metastatic colorectal can- cer. Br J Cancer 2004;91:678-82. ref. 38 Rouits E et al.	*28/*28: E *1/*28: E	 wing four regimens: irinotecan 350 mg/m² every three weeks, irinotecan 350 mg/m² every three weeks + raltitrexed, irinotecan 80 mg/m² once weekly + 5-FU, irinotecan 180 mg/m² every two weeks + 5-FU+levofolinic acid, other co-medication not known; *28/*28: significant increase versus *1/*1 in the incidence of diarrhoea [from 17% to 70% (S by 312%)] and asthenia [from 25% to 70% (S by 180%)]. Non-significant increase in grade 3-4 haematological toxicity from 15% to 40% (NS by 167%). UGT1A1 genotype is the only variable associated with severe diarrhoea. No difference in overall survival. *1/*28: significant increase versus *1/*1 in the incidence of diarrhoea [from 17% to 33% (S by 94%)] and asthenia [from 25% to 38% (S by 52%)]. Non-significant increase in grade 3-4 haematological toxicity from 15% to 27% (NS by 80%). No difference in overall survival. 75 patients, 7x *28/*28, 35x *1/*28, 31x *1/*1, 2x *36/*1 or *36/*28, irinotecan 85 mg/m² weekly + 5-FU + folinic acid or 	
2005;15:35-41. ref. 37 Marcuello E et al. UGT1A1 gene variations and irinotecan treat- ment in patients with metastatic colorectal can- cer. Br J Cancer 2004;91:678-82. ref. 38 Rouits E et al. Relevance of	*28/*28: E *1/*28: E	 wing four regimens: irinotecan 350 mg/m² every three weeks, irinotecan 350 mg/m² every three weeks + raltitrexed, irinotecan 80 mg/m² once weekly + 5-FU, irinotecan 180 mg/m² every two weeks + 5-FU+levofolinic acid, other co-medication not known; *28/*28: significant increase versus *1/*1 in the incidence of diarrhoea [from 17% to 70% (S by 312%)] and asthenia [from 25% to 70% (S by 180%)]. Non-significant increase in grade 3-4 haematological toxicity from 15% to 40% (NS by 167%). UGT1A1 genotype is the only variable associated with severe diarrhoea. No difference in overall survival. *1/*28: significant increase versus *1/*1 in the incidence of diarrhoea [from 17% to 33% (S by 94%)] and asthenia [from 25% to 38% (S by 52%)]. Non-significant increase in grade 3-4 haematological toxicity from 15% to 27% (NS by 80%). No difference in overall survival. 75 patients, 7x *28/*28, 35x *1/*28, 31x *1/*1, 2x *36/*1 or *36/*28, irinotecan 85 mg/m² weekly + 5-FU + folinic acid or irinotecan 180 mg/m² every two weeks in FOLFIRI^a regimen, 	
2005;15:35-41. ref. 37 Marcuello E et al. UGT1A1 gene variations and irinotecan treat- ment in patients with metastatic colorectal can- cer. Br J Cancer 2004;91:678-82. ref. 38 Rouits E et al. Relevance of different UGT1A1	*28/*28: E *1/*28: E	 wing four regimens: irinotecan 350 mg/m² every three weeks, irinotecan 350 mg/m² every three weeks + raltitrexed, irinotecan 80 mg/m² once weekly + 5-FU, irinotecan 180 mg/m² every two weeks + 5-FU+levofolinic acid, other co-medication not known; *28/*28: significant increase versus *1/*1 in the incidence of diarrhoea [from 17% to 70% (S by 312%)] and asthenia [from 25% to 70% (S by 180%)]. Non-significant increase in grade 3-4 haematological toxicity from 15% to 40% (NS by 167%). UGT1A1 genotype is the only variable associated with severe diarrhoea. No difference in overall survival. *1/*28: significant increase versus *1/*1 in the incidence of diarrhoea [from 17% to 33% (S by 94%)] and asthenia [from 25% to 38% (S by 52%)]. Non-significant increase in grade 3-4 haematological toxicity from 15% to 27% (NS by 80%). No difference in overall survival. 75 patients, 7x *28/*28, 35x *1/*28, 31x *1/*1, 2x *36/*1 or *36/*28, irinotecan 85 mg/m² weekly + 5-FU + folinic acid or 	
2005;15:35-41. ref. 37 Marcuello E et al. UGT1A1 gene variations and irinotecan treat- ment in patients with metastatic colorectal can- cer. Br J Cancer 2004;91:678-82. ref. 38 Rouits E et al. Relevance of different UGT1A1 polymorphisms in	*28/*28: E *1/*28: E	 wing four regimens: irinotecan 350 mg/m² every three weeks, irinotecan 350 mg/m² every three weeks + raltitrexed, irinotecan 80 mg/m² once weekly + 5-FU, irinotecan 180 mg/m² every two weeks + 5-FU+levofolinic acid, other co-medication not known; *28/*28: significant increase versus *1/*1 in the incidence of diarrhoea [from 17% to 70% (S by 312%)] and asthenia [from 25% to 70% (S by 180%)]. Non-significant increase in grade 3-4 haematological toxicity from 15% to 40% (NS by 167%). UGT1A1 genotype is the only variable associated with severe diarrhoea. No difference in overall survival. *1/*28: significant increase versus *1/*1 in the incidence of diarrhoea [from 17% to 33% (S by 94%)] and asthenia [from 25% to 38% (S by 52%)]. Non-significant increase in grade 3-4 haematological toxicity from 15% to 27% (NS by 80%). No difference in overall survival. 75 patients, 7x *28/*28, 35x *1/*28, 31x *1/*1, 2x *36/*1 or *36/*28, irinotecan 85 mg/m² weekly + 5-FU + folinic acid or irinotecan 180 mg/m² every two weeks in FOLFIRI^a regimen, 	
2005;15:35-41. ref. 37 Marcuello E et al. UGT1A1 gene variations and irinotecan treat- ment in patients with metastatic colorectal can- cer. Br J Cancer 2004;91:678-82. ref. 38 Rouits E et al. Relevance of different UGT1A1 polymorphisms in irinotecan-indu-	*28/*28: E *1/*28: E	 wing four regimens: irinotecan 350 mg/m² every three weeks, irinotecan 350 mg/m² every three weeks + raltitrexed, irinotecan 80 mg/m² once weekly + 5-FU, irinotecan 180 mg/m² every two weeks + 5-FU+levofolinic acid, other co-medication not known; *28/*28: significant increase versus *1/*1 in the incidence of diarrhoea [from 17% to 70% (S by 312%)] and asthenia [from 25% to 70% (S by 180%)]. Non-significant increase in grade 3-4 haematological toxicity from 15% to 40% (NS by 167%). UGT1A1 genotype is the only variable associated with severe diarrhoea. No difference in overall survival. *1/*28: significant increase versus *1/*1 in the incidence of diarrhoea [from 17% to 33% (S by 94%)] and asthenia [from 25% to 38% (S by 52%)]. Non-significant increase in grade 3-4 haematological toxicity from 15% to 27% (NS by 80%). No difference in overall survival. 75 patients, 7x *28/*28, 35x *1/*28, 31x *1/*1, 2x *36/*1 or *36/*28, irinotecan 85 mg/m² weekly + 5-FU + folinic acid or irinotecan 180 mg/m² every two weeks in FOLFIRI^a regimen, 	
2005;15:35-41. ref. 37 Marcuello E et al. UGT1A1 gene variations and irinotecan treat- ment in patients with metastatic colorectal can- cer. Br J Cancer 2004;91:678-82. ref. 38 Rouits E et al. Relevance of different UGT1A1 polymorphisms in irinotecan-indu- ced toxicity: a	*28/*28: E *1/*28: E	 wing four regimens: irinotecan 350 mg/m² every three weeks, irinotecan 350 mg/m² every three weeks + raltitrexed, irinotecan 80 mg/m² once weekly + 5-FU, irinotecan 180 mg/m² every two weeks + 5-FU+levofolinic acid, other co-medication not known; *28/*28: significant increase versus *1/*1 in the incidence of diarrhoea [from 17% to 70% (S by 312%)] and asthenia [from 25% to 70% (S by 180%)]. Non-significant increase in grade 3-4 haematological toxicity from 15% to 40% (NS by 167%). UGT1A1 genotype is the only variable associated with severe diarrhoea. No difference in overall survival. *1/*28: significant increase versus *1/*1 in the incidence of diarrhoea [from 17% to 33% (S by 94%)] and asthenia [from 25% to 38% (S by 52%)]. Non-significant increase in grade 3-4 haematological toxicity from 15% to 27% (NS by 80%). No difference in overall survival. 75 patients, 7x *28/*28, 35x *1/*28, 31x *1/*1, 2x *36/*1 or *36/*28, irinotecan 85 mg/m² weekly + 5-FU + folinic acid or irinotecan 180 mg/m² every two weeks in FOLFIRI^a regimen, other co-medication not known; *28/*28: grade 3-4 neutropenia increased from 10% to 	
2005;15:35-41. ref. 37 Marcuello E et al. UGT1A1 gene variations and irinotecan treat- ment in patients with metastatic colorectal can- cer. Br J Cancer 2004;91:678-82. ref. 38 Rouits E et al. Relevance of different UGT1A1 polymorphisms in irinotecan-indu- ced toxicity: a molecular and	*28/*28: E *1/*28: E	 wing four regimens: irinotecan 350 mg/m² every three weeks, irinotecan 350 mg/m² every three weeks + raltitrexed, irinotecan 80 mg/m² once weekly + 5-FU, irinotecan 180 mg/m² every two weeks + 5-FU+levofolinic acid, other co-medication not known; *28/*28: significant increase versus *1/*1 in the incidence of diarrhoea [from 17% to 70% (S by 312%)] and asthenia [from 25% to 70% (S by 180%)]. Non-significant increase in grade 3-4 haematological toxicity from 15% to 40% (NS by 167%). UGT1A1 genotype is the only variable associated with severe diarrhoea. No difference in overall survival. *1/*28: significant increase versus *1/*1 in the incidence of diarrhoea [from 17% to 33% (S by 94%)] and asthenia [from 25% to 38% (S by 52%)]. Non-significant increase in grade 3-4 haematological toxicity from 15% to 27% (NS by 80%). No difference in overall survival. *1/*28: significant sex versus *1/*1 in the incidence of diarrhoea [from 17% to 33% (S by 94%)] and asthenia [from 25% to 38% (S by 52%)]. Non-significant increase in grade 3-4 haematological toxicity from 15% to 27% (NS by 80%). No difference in overall survival. 75 patients, 7x *28/*28, 35x *1/*28, 31x *1/*1, 2x *36/*1 or *36/*28, irinotecan 85 mg/m² weekly + 5-FU + folinic acid or irinotecan 180 mg/m² every two weeks in FOLFIRI^a regimen, other co-medication not known; *28/*28: grade 3-4 neutropenia increased from 10% to 71% (S by 638%), grade 4 diarrhoea increased from 3% 	
2005;15:35-41. ref. 37 Marcuello E et al. UGT1A1 gene variations and irinotecan treat- ment in patients with metastatic colorectal can- cer. Br J Cancer 2004;91:678-82. ref. 38 Rouits E et al. Relevance of different UGT1A1 polymorphisms in irinotecan-indu- ced toxicity: a molecular and clinical study of	*28/*28: E *1/*28: E 3	 wing four regimens: irinotecan 350 mg/m² every three weeks, irinotecan 350 mg/m² every three weeks + raltitrexed, irinotecan 80 mg/m² once weekly + 5-FU, irinotecan 180 mg/m² every two weeks + 5-FU+levofolinic acid, other co-medication not known; *28/*28: significant increase versus *1/*1 in the incidence of diarrhoea [from 17% to 70% (S by 312%)] and asthenia [from 25% to 70% (S by 180%)]. Non-significant increase in grade 3-4 haematological toxicity from 15% to 40% (NS by 167%). UGT1A1 genotype is the only variable associated with severe diarrhoea. No difference in overall survival. *1/*28: significant increase versus *1/*1 in the incidence of diarrhoea [from 17% to 33% (S by 94%)] and asthenia [from 25% to 38% (S by 52%)]. Non-significant increase in grade 3-4 haematological toxicity from 15% to 27% (NS by 80%). No difference in overall survival. *1/*28: significant increase versus *1/*1 in the incidence of diarrhoea [from 17% to 33% (S by 94%)] and asthenia [from 25% to 38% (S by 52%)]. Non-significant increase in grade 3-4 haematological toxicity from 15% to 27% (NS by 80%). No difference in overall survival. 75 patients, 7x *28/*28, 35x *1/*28, 31x *1/*1, 2x *36/*1 or *36/*28, irinotecan 85 mg/m² weekly + 5-FU + folinic acid or irinotecan 180 mg/m² every two weeks in FOLFIRI^a regimen, other co-medication not known; *28/*28: grade 3-4 neutropenia increased from 10% to 71% (S by 638%), grade 4 diarrhoea increased from 3% to 29% (NS by 793%). 	
2005;15:35-41. ref. 37 Marcuello E et al. UGT1A1 gene variations and irinotecan treat- ment in patients with metastatic colorectal can- cer. Br J Cancer 2004;91:678-82. ref. 38 Rouits E et al. Relevance of different UGT1A1 polymorphisms in irinotecan-indu- ced toxicity: a molecular and clinical study of 75 patients.	*28/*28: E *1/*28: E	 wing four regimens: irinotecan 350 mg/m² every three weeks, irinotecan 350 mg/m² every three weeks + raltitrexed, irinotecan 80 mg/m² once weekly + 5-FU, irinotecan 180 mg/m² every two weeks + 5-FU+levofolinic acid, other co-medication not known; *28/*28: significant increase versus *1/*1 in the incidence of diarrhoea [from 17% to 70% (S by 312%)] and asthenia [from 25% to 70% (S by 180%)]. Non-significant increase in grade 3-4 haematological toxicity from 15% to 40% (NS by 167%). UGT1A1 genotype is the only variable associated with severe diarrhoea. No difference in overall survival. *1/*28: significant increase versus *1/*1 in the incidence of diarrhoea [from 17% to 33% (S by 94%)] and asthenia [from 25% to 38% (S by 52%)]. Non-significant increase in grade 3-4 haematological toxicity from 15% to 27% (NS by 80%). No difference in overall survival. *1/*28: notecan 85 mg/m² weekly + 5-FU + folinic acid or irinotecan 180 mg/m² every two weeks in FOLFIRI^a regimen, other co-medication not known; *28/*28: grade 3-4 neutropenia increased from 10% to 71% (S by 638%), grade 4 diarrhoea increased from 3% to 29% (NS by 793%). *1/*28: grade 3-4 neutropenia increased from 10% to 40% 	
2005;15:35-41. ref. 37 Marcuello E et al. UGT1A1 gene variations and irinotecan treat- ment in patients with metastatic colorectal can- cer. Br J Cancer 2004;91:678-82.	*28/*28: E *1/*28: E 3	 wing four regimens: irinotecan 350 mg/m² every three weeks, irinotecan 350 mg/m² every three weeks + raltitrexed, irinotecan 80 mg/m² once weekly + 5-FU, irinotecan 180 mg/m² every two weeks + 5-FU+levofolinic acid, other co-medication not known; *28/*28: significant increase versus *1/*1 in the incidence of diarrhoea [from 17% to 70% (S by 312%)] and asthenia [from 25% to 70% (S by 180%)]. Non-significant increase in grade 3-4 haematological toxicity from 15% to 40% (NS by 167%). UGT1A1 genotype is the only variable associated with severe diarrhoea. No difference in overall survival. *1/*28: significant increase versus *1/*1 in the incidence of diarrhoea [from 17% to 33% (S by 94%)] and asthenia [from 25% to 38% (S by 52%)]. Non-significant increase in grade 3-4 haematological toxicity from 15% to 27% (NS by 80%). No difference in overall survival. *1/*28: ninotecan 85 mg/m² weekly + 5-FU + folinic acid or irinotecan 180 mg/m² every two weeks in FOLFIRI^a regimen, other co-medication not known; *28/*28: grade 3-4 neutropenia increased from 10% to 71% (S by 638%), grade 4 diarrhoea increased from 3% to 6% 	
2005;15:35-41. ref. 37 Marcuello E et al. UGT1A1 gene variations and irinotecan treat- ment in patients with metastatic colorectal can- cer. Br J Cancer 2004;91:678-82. ref. 38 Rouits E et al. Relevance of different UGT1A1 polymorphisms in irinotecan-indu- ced toxicity: a molecular and clinical study of 75 patients.	*28/*28: E *1/*28: E 3	 wing four regimens: irinotecan 350 mg/m² every three weeks, irinotecan 350 mg/m² every three weeks + raltitrexed, irinotecan 80 mg/m² once weekly + 5-FU, irinotecan 180 mg/m² every two weeks + 5-FU+levofolinic acid, other co-medication not known; *28/*28: significant increase versus *1/*1 in the incidence of diarrhoea [from 17% to 70% (S by 312%)] and asthenia [from 25% to 70% (S by 180%)]. Non-significant increase in grade 3-4 haematological toxicity from 15% to 40% (NS by 167%). UGT1A1 genotype is the only variable associated with severe diarrhoea. No difference in overall survival. *1/*28: significant increase versus *1/*1 in the incidence of diarrhoea [from 17% to 33% (S by 94%)] and asthenia [from 25% to 38% (S by 52%)]. Non-significant increase in grade 3-4 haematological toxicity from 15% to 27% (NS by 80%). No difference in overall survival. *1/*28: notecan 85 mg/m² weekly + 5-FU + folinic acid or irinotecan 180 mg/m² every two weeks in FOLFIRI^a regimen, other co-medication not known; *28/*28: grade 3-4 neutropenia increased from 10% to 71% (S by 638%), grade 4 diarrhoea increased from 3% to 29% (NS by 793%). *1/*28: grade 3-4 neutropenia increased from 10% to 40% 	

ref. 38, continu-							
ation	*28/*28: F One patient (*28/*28), who developed grade 4 diarrhoea with						
	(2)	dehydration, fever and collapse, died.					
		N.B.: 5-FU dosed individually guided by adverse events.					
ref. 39	3	94 patients, 86x genotyped: 5x *28/*28, 37x *1/*28, 44x *1/*1,					
Paoluzzi L et al. Influence of		median irinotecan dose 600 mg, no relevant co-medication;					
genetic variants		kinetic endpoints					
in UGT1A1 and		- *28/*28: SN-38G/SN-38 AUC ratio decreased from 7.00 to	SN-38 AUC versus				
UGT1A9 on the	*28/*28: A	2.51 versus *1/*1 (S by 64%). SN-38 AUC increased (S by	*1/*1:				
in vivo glucuro-		18%; from 508 to 600 ng.h/mL). No significant differences	*1/*28: 118%				
nidation of SN- 38.		in irinotecan and SN-38G AUCs.	*28/*28: 118%				
J Clin Pharmacol		- *1/*28: SN-38G/SN-38 AUC ratio decreased from 7.00 to	SN-38 AUC versus				
2004;44:854-60.	*1/*28: A	6.26 versus *1/*1 (S by 11%). SN-38 AUC increased (S by 18%; from 508 to 600 ng.h/mL). Other parameters differed	all genotypes:				
	1/ 20. A	NS from *1/*1.	*1/*28: 109%				
			*28/*28: 109%				
		clinical endpoints					
		There was no significant association between the UGT1A1*28					
		genotype and the occurrence of grade 2-4 diarrhoea.					
ref. 40	3	195 patients, 85 with cancer, single dose of irinotecan 60-150 $m a/m^2$					
Sai K et al. UGT1A1 haplo-		mg/m ² , other oncolytic drugs as co-medication.					
types associated		*28:					
with reduced		Genotyping: 3x *28/*28, 15x *1/*28, 23x *1/*1.					
glucuronidation		- *28/*28: SN-38G/SN-38 AUC ratio decreased from 6.36 to					
and increased	*28/*28: A	3.57 versus *1/*1 (S by 44%).					
serum bilirubin in irinotecan-admi-	*4 /****	- *28/*1: SN-38G/SN-38 AUC ratio decreased from 6.36 to					
nistered Japa-	*1/*28: A	 3.45 versus *1/*1 (S by 46%). *28 haplotype had the greatest impact on AUC ratio. 					
nese patients							
with cancer.		*6:					
Clin Pharmacol Ther		Genotyping: 2x *6/*6, 14x *1/*6, 23x *1/*1.					
2004;75:501-15.		- *6/*6: SN-38G/SN-38 AUC ratio decreased from 6.36 to					
		4.27 versus *1/*1 (trend, NS by 33%).					
		 *6/*1: SN-38G/SN-38 AUC ratio decreased from 6.36 to 4.23 versus *1/*1 (NS by 33%). 					
		- *6/*60: SN-38G/SN-38 AUC ratio decreased versus *1/*60					
		(trend, NS by 33%).					
	*6: A	- Significant association of *6 with decrease in SN-38G/SN-					
		38 AUC in multiple regression analysis.					
		NOTE: the factors gonder as mediactics, irighteen deep					
		NOTE: the factors gender, co-medication, irinotecan dose, tumour type and performance status did not affect the AUC					
		ratio. Age did.					
ref. 41	3	65 patients, 6x *28/*28, 25x *1/*28, 30x *1/*1, 2x *1/*37, 1x	Authors' conclusion:				
Innocenti F et al.		*36/*1, 1x *28/*37, irinotecan 350 mg/m ² every three weeks,	'There is no consis-				
Genetic variants in the UDP-		co-medication not known;	tency across diffe- rent studies on whe-				
glucuronosyl-		clinical endpoints	ther the AUC of				
transferase 1A1	*28/*28: E	- *28/*28: grade 4 neutropenia increased from 0% to 50%	irinotecan, SN-38,				
gene predict the		versus *1/*1 (S).	SN-38G, or a combi-				
risk of severe		Grade 3 diarrhoea in 1x *28/*28 versus 0x *1/*1.	nation of these three				
neutropenia of irinotecan.		- *1/*28: grade 4 neutropenia increased from 0% to 12.5%	parameters (the bili- ary index) is the				
J Clin Oncol	*1/*28: E	versus *1/*1 (S). Grade 3 diarrhoea in 2x *1/*28 versus 0x ary index)					
2004;22:1382-8.		*1/*1.	of either severe				
		kinetic endpoints	neutropenia or diar-				
		Significant correlation between SN-38 AUC, SN-38G/SN-38	rhea. Moreover, the				
		AUC ratio and number of *28 alleles.	safe dose of irino- tecan in UGT1A1*28				
L	1	22					

rof 11 continue		CN 20 ALIC: 226 versus AED versus EAD as a black for *4/*4	homonymeric
ref. 41, continu- ation		SN-38 AUC: 336 versus 458 versus 542 ng.h/mL for *1/*1 ver- sus *1/*28 versus *28/*28.	homozygous pa- tients has not been definitively identified yet, although it is likely to be approxi- mately a 20% dose reduction given the relationship of geno- type to SN-38 expo- sure.' SN-38 AUC versus *1/*1: *1/*28: 136% *28/*28: 161% SN-38 AUC versus (*1/*1 + *1/*28 + *28/*28): *1/*28: 112%
			*28/*28: 133%
ref. 42 Font A et al. Weekly regimen of irinotecan/do- cetaxel in previ- ously treated non-small cell lung cancer patients and correlation with uridine diphos- phate glucurono- syl-transferase 1A1 (UGT1A1) polymorphism. Invest New Drugs 2003;21:435-43.	3 *28/*28: AA *1/*28: AA	 47 patients, 7x *28/*28, 17x *1/*28, 23x *1/*1, irinotecan 70 mg/m² weekly + docetaxel, other co-medication not known; *28/*28 + *1/*28: no difference in grade 3-4 toxicity versus *1/*1 (decreased from 43% to 41%, NS by 5%). Disease control increased from 34% to 54% (NS by 60%), progression-free survival increased by 33% from 3 to 4 months, survival increased by 27% from 8 to 11 months, 1-year survival increased by 95% from 21% to 41%. 	Authors' conclusion: 'But we found no differences in toxici- ty according to UGT1A1 polymor- phism. This patient population has been heavily pretreated and therefore could reduce the relevan- ce of the UGT1A1 polymorphism as a genetic predictive marker, as compa- red to using first-line irinotecan-treated patients.'
ref. 43 Mathijssen RH et al. Irinotecan path-	3	65 patients, 2x *28/*28, 19x *1/*28, 32x *1/*1, irinotecan 350 mg/m ² every three weeks or 200-300 mg/m ² every three weeks + cisplatin, co-medication not known;	
way genotype analysis to predict pharma- cokinetics. Clin Cancer Res 2003;9:3246-53.	*28/*28: AA *1/*28: AA	No significant differences in kinetic parameters between diffe- rent UGT1A1*28 genotypes. There was a trend that the SN-38 AUC increases in the presence of allele variants.	
ref. 44 Iyer L et al. UGT1A1*28 polymorphism as a determinant of irinotecan dispo-	3	20 patients, 4x *28/*28, 7x *1/*28, 9x *1/*1, irinotecan 300 mg/m ² every three weeks, co-medication not known; <i>clinical endpoints</i> Significant correlation between the absolute trough neutrophil count and genotype.	
sition and toxici- ty. Pharmacogeno- mics J		Diarrhoea or grade 3-4 neutropenia only in *28/*28 and *1/*28. <i>kinetic endpoints</i>	SN-38 AUC versus *1/*1: *1/*28: 141%
2002;2:43-7.	*28/*28: A	 *28/*28: SN-38G/SN-38 AUC ratio decreased from 9.28 to 2.41 versus *1/*1 (S by 74%), SN-38 AUC_{0-24h} increased from 205.13 to 513.37 ng.h/mL (S by 159%). *1/*28: SN-38G/SN-38 AUC ratio decreased from 9.28 to 	*28/*28: 259% SN-38 AUC versus all genotypes:
	*1/*28: A	4.04 versus *1/*1 (S by 56%), SN-38 AUC _{0-24h} increased	*1/*28: 96%

		from 205.13 to 288.61 ng.h/mL (S by 41%).	*28/*28: 177%
ref. 45	3	Case-control study including 26 cases (\geq grade 3 diarrhoea, \geq	
Ando Y et al.		grade 4 neutropenia on irinotecan) and 92 controls, 65%	
Polymorphisms		received various doses of weekly irinotecan, various oncolytic	
of UDP-glucuro-		drugs as co-medication, other co-medication not known;	
nosyl-transferase			
gene and irinote-		*28:	
can toxicity: a		15% of the cases were *28/*28, 31% *1/*28, while this was	
pharmacogenetic		3% and 11% respectively for the controls. The difference in	
analysis.	*28/*28: E	*28 allele distribution between cases and controls was signifi-	
Cancer Res	*1/*28: E	cant. *28 allele was a significant risk factor for occurrence of	
2000;60:6921-6.	17 20. L	severe irinotecan toxicity, OR was 7.23 (95% CI 2.52-22.3).	
		Severe initiated in toxicity, OK was $7.23 (35\% \text{ Gr} 2.32\text{-}22.3)$.	
		*6:	
	*6/*6, ^ ^	0% of the cases were $\frac{6}{6}$, 15% $\frac{1}{6}$, while this was 2% and 23% respectively for the controls. The difference in $\frac{6}{6}$ allele	
	*6/*6: AA	23% respectively for the controls. The difference in *6 allele	
rof 40	*1/*6: AA	distribution between cases and controls was not significant.	
ref. 46	2	Two patients (metastatic colon cancer) with Gilbert's syndro-	
Wasserman E et		me (low UGT1A1 activity) developed severe diarrhoea and	
al.		neutropenia on treatment with irinotecan;	
Severe CPT-11		- Patient 1: 10 cycles of irinotecan 150 mg/m ² + oxaliplatin,	
toxicity in	Gilbert's	serum bilirubin elevation and grade 4 neutropenia during	
patients with Gilbert's syndro-	syndrome:	each cycle. Grade 4 diarrhoea only developed during the	
	E	first cycle. SN-38G/SN-38 AUC ratio was 1.8.	
me: two case		- Patient 2: 2 cycles of irinotecan 200 mg/m ² + oxaliplatin,	
reports. Ann Oncol		serum bilirubin elevation and grade 4 neutropenia during	
1997;8:1049-51.		each cycle. Grade 4 diarrhoea only developed during the	
		first cycle. SN-38G/SN-38 AUC ratio was 4.2.	
ref. 47	0	Pharmacodynamic data:	
SmPC Campto		Patients with Reduced UGT1A1 Activity:	
(irinotecan hydro-		Uridine diphosphate-glucuronosyl transferase 1A1 (UGT1A1)	
chloride trihy-		is involved in the metabolic deactivation of SN-38, the active	
drate) 23-11-20.		metabolite of irinotecan, to inactive SN-38 glucuronide (SN-	
		38G). The UGT1A1 gene is highly polymorphic, resulting in	
		highly variable metabolic capacities among individuals. One	
		specific variation of the UGT1A1 gene includes a polymor-	
		phism in the promoter region known as the UGT1A1*28	
		variant.	
		This variant and other congenital deficiencies in UGT1A1	
		expression (such as Crigler-Najjar syndrome and Gilbert's syndrome) are associated with reduced activity of this enzy-	
		me. Data from a meta-analysis indicate that individuals with	
		Crigler-Najjar syndrome (types 1 and 2) or those who are	
		homozygous for the UGT1A1*28 allele (Gilbert's syndrome)	
	*28/*28: E	are at increased risk of haematological toxicity (grade 3 to 4)	
		following administration of irinotecan at moderate or high	
		doses (>150 mg/m ²). A relationship between UGT1A1 geno-	
		type and the occurrence of irinotecan-induced diarrhoea was	
		not established.	
		Patients known to be homozygous for UGT1A1*28 should	
		receive the normally indicated irinotecan starting dose. How-	
		ever, these patients should be monitored for haematological	
		toxicities. A reduced irinotecan starting dose should be consi-	
		dered for patients who have experienced haematological	
		toxicity with previous treatment. The exact reduction in starting	
		dose in this patient population has not been established and	
		any subsequent dose modifications should be based on a	
		patient's tolerance of the treatment.	
		There are at present insufficient data to conclude on clinical	
		utility of UGT1A1 genotyping.	

ref. 48	0	Dosage in patients with reduced UGT1A1 Activity:	
SmPC Campto-	0	When administered in combination with other agents, or as a	
		single-agent, a reduction in the starting dose by at least one	
sar (irinotecan)		level of Camptosar should be considered for patients known to	
30-01-20 (USA).			
		be homozygous for the UGT1A1*28 allele. However, the precise dose reduction in this patient population is not known,	
		and subsequent dose modifications should be considered	
		based on individual patient tolerance to treatment.	
		Warning:	
		Individuals who are homozygous for the UGT1A1*28 allele	
		(UGT1A1 7/7 genotype) are at increased risk for neutropenia	
		following initiation of Camptosar treatment.	
	*28/*28:E	In a study of 66 patients who received single-agent Campto-	
		sar (350 mg/m2 once-every-3-weeks), the incidence of grade	
		4 neutropenia in patients homozygous for the UGT1A1*28	
		allele was 50%, and in patients heterozygous for this allele	
		(UGT1A1 6/7 genotype) the incidence was 12.5%. No grade 4	
		neutropenia was observed in patients homozygous for the	
		wild-type allele (UGT1A1 6/6 genotype).	
		In a prospective study (n=250) to investigate the role of	
		UGT1A1*28 polymorphism in the development of toxicity in	
		patients treated with Camptosar (180 mg/m2) in combination	
		with infusional 5-FU/LV, the incidence of grade 4 neutropenia	
		in patients homozygous for the UGT1A1*28 allele was 4.5%,	
		and in patients heterozygous for this allele the incidence was	
		5.3%. Grade 4 neutropenia was observed in 1.8% of patients	
		homozygous for the wild-type allele.	
		In another study in which 109 patients were treated with	
		Camptosar (100–125 mg/m2) in combination with bolus 5-	
		FU/LV, the incidence of grade 4 neutropenia in patients	
		homozygous for the UGT1A1*28 allele was 18.2%, and in	
		patients heterozygous for this allele the incidence was 11.1%.	
		Grade 4 neutropenia was observed in 6.8% of patients homo-	
		zygous for the wild-type allele.	
		When administered in combination with other agents or as a	
		single-agent, a reduction in the starting dose by at least one	
		level of Camptosar should be considered for patients known to	
		be homozygous for the UGT1A1*28 allele. However, the	
		precise dose reduction in this patient population is not known	
		and subsequent dose modifications should be considered	
		based on individual patient tolerance to treatment.	
		A laboratory test is available to determine the UGT1A1 status	
		of patients. Testing can detect the UGT1A1 6/6, 6/7 and 7/7	
		genotypes.	
		Pharmacokinetics:	
		UGT1A1 activity is reduced in individuals with genetic poly-	
		morphisms that lead to reduced enzyme activity such as the	
		UGT1A1*28 polymorphism. Approximately 10% of the North	
		American population is homozygous for the UGT1A1*28 allele	
		(also referred to as UGT1A1 7/7 genotype). In a prospective	
		study, in which irinotecan was administered as a single-agent	
		(350 mg/m2) on a once-every-3-week schedule, patients with	
		the UGT1A1 7/7 genotype had a higher exposure to SN-38	
		than patients with the wild-type UGT1A1 allele (UGT1A1 6/6	
		genotype).	
a FOL FIRL IFL - iri	notocon fluc	prouracil and leucovorin (= folinic acid)	

^a FOLFIRI, IFL = irinotecan, fluorouracil and leucovorin (= folinic acid)
 ^b IROX = irinotecan, oxaliplatin
 AA[#]: there was a significant effect, but this effect was positive instead of negative.

Risk group	*28/*28 and PM with UGT1A1 inhibitors (e.g. ketoconazole, atazanavir, gemfibrozil,
	indinavir)

Comments:

- KNMP comment: on theoretical grounds, the recommendation for the IM and PM phenotypes is the same as the recommendation for *1/*28 and *28/*28 respectively. The SN-38 glucuronide/SN-38 AUCs are almost the same for *28/*28 and *6/*6, suggestive of a similar effect on irinotecan metabolism (Minami H et al. Irinotecan pharmacokinetics/pharmacodynamics and UGT1A genetic polymorphisms in Japanese: roles of UGT1A1*6 and *28. Pharmacogenet Genomics. 2007;17:497–504).
- Administration of irinotecan was intravenous unless stated otherwise.
- Given the large number of articles, the only articles included after July 2006 (Toffoli et al.) were those that included greater or equal than 25 patients with one or more *28 alleles.

The only clinical studies included for the period 2008-2017 were meta-analyses. From 2008 to 2014 only metaanalyses with mainly Caucasian patients were included. Three Asian meta-analyses investigating the effect of *6 and *28 were not included as these are insufficiently relevant to the situation in the Netherlands. Individual studies were not included as large studies (n > 200) including mainly Caucasian patients were already included in one of the recent meta-analyses. From 2014, meta-analyses were included if the effect of *28 was analysed, either alone or in combination with *6. Individual studies were not included, because they did not add enough to the evidence. For the period after 2017, clinical studies were only included if they investigated more than 500 patients with the additional requirements of more than 150 cases for case-control studies and analysis of the effect of *28 in the case of meta-analyses. Kinetic studies were only included if exposure to or clearance of SN-38 was determined for the *1/*1, *1/*28 and *28/*28 genotypes and if these were the most important genotypes investigated within the population (i.e. studies among Caucasians) (for the period from 2008 to 2014) or for the *1/*1, *1/*28 and/or *1/*6, and *28/*28 and/or *6/*28 and/or *28/*28 genotypes (for the period from 2014). For the periods from 2008 to 2014 and after 2017, there were no relevant studies investigating the effect of dose adjustments. This means that there were no studies that investigated the effect of approximately 30% lower initial doses for PM compared to the standard dose for NM and IM in this period.

Existing guidelines:

- A cura del Gruppo di Lavoro di AIOM-SIF. Raccomandazioni per analisi farmacogenetiche.

This unpublished Italian guideline is consulted for the UPGx project in 2016. For homozygotes a dose reduction of 30% is recommended.

Cost-effectiveness

- Henderson R et al. Molecular biomarkers and precision medicine in colorectal cancer: a systematic review of health economic analyses. Oncotarget 2019;10:3408-23. PMID: 31164962.

The authors performed a systematic review of cost effectiveness analyses and concluded that current research does not support UGT1A1 polymorphism status as a cost-effective guide to irinotecan dosing. In all studies, additional costs per quality-adjusted life-year (QALY) for UGT1A1 genotyping for guidance of irinotecan dosing were in excess of £1 million (€1 million).

The authors do not explain how they selected the values for additional costs per QALY gained. Butzke 2016 mentions dose reduction for *28/*28 and *1/*28 to be cost saving, dose reduction for *28/*28 not to be cost-effective with additional costs of \in 17,040,017 per QALY gained, and additional costs of \in 65 million per QALY gained for administration of a prophylactic granulocyte colony stimulating factor analogue (pegfilgrastim) instead of dose reduction for *28/*28 and *1/*28. The authors of the review indicate that Butzke 2016 calculated additional costs of \in 69 million per QALY gained for UGT1A1 genotype guided irinotecan dosing. Gold 2009 mentions that genotyping prior to treatment saves costs, but that results were dependent on the effectiveness of the treatment, such that the therapeutic effectiveness of irinotecan in PM patients after dose reduction would need to be > 98.4% of that of the full dose in order for genetic testing to continue to be the preferred treatment at the limit of US\$ 100.000 per quality adjusted life year. The authors of the review indicate that Gold 2009 found another treatment to be both better and cheaper than genotype-guided dosing. Obradovic 2008 concluded that genotyping in combination with a reduced initial irinotecan dose for patients with the *28/*28 genotype was cost-saving among White and African populations. The authors of the review calculated additional costs of \in 1.5 million per QALY gained with the data from Obradovic 2008.

The authors indicate that three of the irinotecan studies (Butzke 2016, Gold 2009, and Obradovic 2008) identified in the systematic review suggest that prior testing for UGT1A1 may be cost saving, but that their systematic review is inconclusive as to whether testing improves patient outcomes, with both positive (Butzke 2016) and negative (Gold 2009) QALYs being reported. Goldstein 2015 stated that they cannot recommend UGT1A1 genotyping to guide irinotecan dosing, and that any dose reduction should be based on clinical parameters, rather than UGT1A1 status (Goldstein DA et al. Costs and effectiveness of genomic testing in the management of colorectal cancer. Oncology (Williston Park) 2015;29:175-83). In addition, they indicate that Lu 2015 attempted a different approach by escalating the dose in UGT1A1 *1/*1 and UGT1A1 *1/*28, with positive therapeutic results without the development of adverse effects, and that a randomised controlled trial of this approach is ongoing (Lu CY et al. Clinical implication of UGT1A1 promoter polymorphism for irinotecan dose escalation in metastatic colorectal cancer patients treated with bevacizumab combined with FOLFIRI in the first-line setting. Transl Oncol 2015;8:474-79 and Yeh YS et al. Prospective analysis of UGT1A1 promoter polymorphism for irinotecan dose escalation in metastatic colorectal cancer patients treated with bevacizumab plus FOLFIRI as the first-line setting: study protocol for a randomized controlled trial. Trials 2016;17:46). As the optimum dosing of irinotecan based on UGT1A1 status has yet to be defined (Semrad TJ, Kim EJ. Molecular testing to optimize therapeutic decision making in advanced colorectal cancer. J Gastrointest Oncol 2016;7:S11–20), UGT1A1 genotyping to guide irinotecan dosing will most likely need to be revisited following the availability of results from randomized controlled trials such as the one highlighted above in order to determine its efficacy and cost-effectiveness.

Butzke 2016, Pichereau 2010, Gold 2009, and Obradovic 2008 were included in the systematic review. Two of these studies (Butzke 2016 and Gold 2009) reported the incremental costs per quality adjusted life-year (QALY), one per life-year gained (Obradovic 2008) and one reported the costs to avoid 1 case of febrile neutropenia (Pichereau 2010). The cost-effectiveness analysis was described from the perspective of the healthcare paver in 3 studies (Butzke 2016, Gold 2009, and Obradovic 2008), whereas Pichereau 2010 focussed on the perspective of the hospital. While Butzke 2016 employed a decision analytic approach in combination with a Markov model and a lifetime time horizon, the remaining 3 studies solely employed a decision tree to model treatment strategies, with no specified time horizon (Pichereau 2010, Gold 2009, and Obradovic 2008). 2 of the studies employed a discount rate of 3% (Butzke 2016 and Gold 2009). These studies also employed a health utility questionnaire; EQ-5D was used by Butzke 2016, while Gold 2009 did not specify which health utility questionnaires they employed. 3 of the studies reported willingness-to-pay thresholds, which ranged from €50,000 in 2013 (£46,950 or €53,340 in 2016) (Butzke 2016) to US\$100,000 in 2006 (£81,606 or €92,713 in 2016) (Pichereau 2010 and Obradovic 2008). Gold 2009 and Butzke 2016 performed both a deterministic sensitivity analysis (testing parameters such as clinical effects, disease progression, QALYs and costs one at a time) and a probabilistic sensitivity analysis (testing parameters such as clinical effects, disease progression, QALYs and costs in combination), whereas Obradovic 2008 and Pichereau 2010 only performed a probabilistic sensitivity analysis. These analyses were employed to address the uncertainty surrounding the cost-effectiveness of irinotecan dosing based on the UGT1A1 genotyping.

- Wei X et al. Cost-effectiveness analysis of UGT1A1*6/*28 genotyping for preventing FOLFIRI-induced severe neutropenia in Chinese colorectal cancer patients. Pharmacogenomics 2019;20:241-9. PMID: 30628534. The authors concluded that UGT1A1*6/*28 genotyping was cost saving for Chinese metastatic colorectal cancer patients. Genotyping with dose reduction (50% reduction in irinotecan dose for *28/*28 and PM, standard dose for the other genotypes) was both cheaper and better than either no genotyping or genotyping without dose adjustment. Compared with no genotyping and genotyping with unchanged dose, it resulted in only marginal quality-adjusted life-year increases (0.0011 and 0.0012) but a cost reduction of \$651.12 and \$805.22 per patient, respectively. It could lead to an absolute decrease in the incidence of severe neutropenia to 40.25 cases including 0.01 deaths per 1000 exposures. One-way sensitivity analyses revealed that the model was relatively robust. Only the probability of severe neutropenia in wild-type and heterozygote with full irinotecan dose, and the probability of severe neutropenia with full dose without genotyping had a considerable effect on the net benefit of genotyping and dose reduction versus no genotyping. The prevalence of patients with two variant alleles (*28/*28 or PM) was the same in this Chinese population as in the Netherlands (9%). Remarks:
- Calculations were made from the perspective of the Chinese healthcare system.
- Only the adverse event neutropenia was modelled, only neutropenia grade 4 was considered severe neutropenia.
- Only direct medical costs were included in the calculation.
- The strategy 'genotyping and dose reduction' resulted in costs of US\$ 30,432.37, in 0.3883 QALYs, and in 40.25 cases of neutropenia grade 4 per 1000 patients. The strategy 'no genotyping' resulted in costs of US\$ 31,083.49, in 0.3872 QALYs, and in 51.6 cases of neutropenia grade 4 per 1000 patients. Assumptions/data used:

- Treatment of patients with FOLFIRI (irinotecan in combination with 5-fluorouracil and folinic acid) for 12 weeks.

- It was assumed that all strategies would not affect the average life expectancy this was consistent with clinical evidence from the prospective, nationwide, multicentre, clinical trial of Qin 2017 that there were no significant differences of progression-free survival and overall survival among the patients with dose reduction or no dose reduction (Qin S. Impact of irinotecan dose adjustment based on UGT1A1 genotype on the toxicity and effica-cy of FOLFIRI regimen in treating patients with metastatic colorectal cancer: a prospective study [Master's Degree Thesis]. The Medical University Of Anhui, Anhui, China (2017)).
- It was also assumed that the FOLFIRI regimen had 100% efficacy in all patients and the same efficacy at a reduced dose regardless of the genotype because homozygotes exhibit slower glucuronidation and a higher plasma concentration of SN-38.
- Severe neutropenic status was assumed to last 1 week, and the death from severe neutropenia was assumed at the end of every chemotherapy cycle (lasting 2 weeks).

- The willingness to pay threshold was \$26,508 (3 times the domestic Gross Domestic Product per capita). Most parameters in the decision tree were based on the literature (mainly the prospective, nationwide, multicentre, clinical trial of Qin 2017 (Qin S. Impact of irinotecan dose adjustment based on UGT1A1 genotype on the toxicity and efficacy of FOLFIRI regimen in treating patients with metastatic colorectal cancer: a prospective study [Master's Degree Thesis]. The Medical University Of Anhui, Anhui, China (2017)):

- the prevalence of patients with two variant alleles was 9% (as is the case in the Netherlands)

- the probabilities of each of the genotypes and all genotypes together developing neutropenia grade 4 (for patients with two variant alleles both on full and reduced irinotecan dose) were derived from Qin 2017, Wen

2014 and Wang 2012 (Wen F et al. Cost–effectiveness analysis of colon cancer treatments from MOSIAC and No. 16968 trials. World J Gastroenterol 2014;20:17976-84 and Wang Y et al. Correlation between UGT1A1 gene polymorphisms and toxicity and efficacy in patients with metastatic colorectal cancer treated with irinote-can based chemotherapy. Chinese Clinical Oncol 2012;17:961-6)

- the probability of death from neutropenia grade 4 was derived from Gold 2009
- quality-of-life weights (utility values) associated with metastatic colorectal cancer and severe neutropenia were derived from literature
- the cost of full dose FOLFIRI was US\$ 1016.18, and the cost of FOLFIRI with 50% dose of irinotecan US\$ 560.87
- the cost of one UGT1A1 test was US\$ 142.12
- the costs for neutropenia grade 0-3 and neutropenia grade 4 were US\$ 388.17 and US\$ 2044.12, respectively the cost of routine examination and testing was US\$ 349.98.
- Butzke B et al. The cost-effectiveness of UGT1A1 genotyping before colorectal cancer treatment with irinotecan from the perspective of the German statutory health insurance. Acta Oncol 2016;55:318-28. PubMed PMID: 26098842.

The authors concluded that this model-based synthesis of the most recent evidence suggests that pharmacogenetic UGT1A1 testing prior to irinotecan-based chemotherapy is both cheaper and better than non-personalized colon cancer care in Germany. UGT1A1 genotyping of German patients with metastatic colorectal cancer before initiation of irinotecan and reducing the dose with 25% for *1/*28 and *28/*28 was cost-saving compared to no genotyping (only marginally increased quality-adjusted life years (QALY) (increase with 0.0002), but a cost reduction of \in 580 per patient). In the probabilistic analysis, genotyping and dose reduction was the optimal strategy in approximately 100% of simulations at a threshold of \in 50,000 per QALY. Deterministic sensitivity analysis shows that uncertainty for this strategy originated primarily from costs for irinotecan-based chemotherapy, from the prevalence of neutropenia among heterozygous patients, and from whether dose reduction is applied to both homozygotes and heterozygotes or only to the former. If dose reduction is only applied to homozygotes, the strategy increased costs compared to no testing by about \in 99 and resulted in a QALY gain of less than 0.0001. Compared to the no testing strategy this scenario would result in additional costs of \in 17,040,017 per QALY gained and thus would not be cost effective.

Administration of a prophylactic granulocyte colony stimulating factor analogue (pegfilgrastim) for homozygous and heterozygous patients instead of dose reduction resulted in the same health gains but increased costs by € 10,773, resulting in additional costs of € 65 million per QALY gained. Remarks:

- Calculations were made from the perspective of the German statutory health insurance and with a life time horizon.
- The strategy 'genetic test and dose reduction' resulted in costs of € 23,414 and in approximately 1.1292 QALYs, the strategy 'no genetic test' in costs of € 23,995 and in 1.1290 QALYs, and the strategy 'genetic test and growth factors' in costs of € 34,187 and in 1.1292 QALYs.

Assumptions/data used:

- Treatment of patients with FOLFIRI (irinotecan in combination with 5-fluorouracil and folinic acid).
- The UGT1A1 genotype can predict individuals' risks to develop sever neutropenia and diarrhoea.
- Patients with severe neutropenia/diarrhea have a reduction in quality of life which lasts for one week.
- Dose-reduction and the administration of growth factors are not assumed to affect the effectiveness of the irinotecan treatment.
- Irinotecan treatment is limited to a maximum of 26 weeks.
- After the occurrence of severe side-effects an alternative chemotherapy regime is administered.
- The duration of the subsequent therapy line was limited to a maximum of 24 weeks.
- The subsequent line of therapy is only assumed to influence costs but it does not affect overall survival and quality of life. This indicates that the subsequent therapy after severe neutropenia was assumed to completely prevent further cases of neutropenia.
- Most parameters in the decision tree were based on the literature:
- the frequency of the *28 allele was 31%
- the probabilities of each of the genotypes developing severe neutropenia or severe diarrhoea were derived from Coté 2007 and Martinez-Balibrea 2010 respectively
- the probability of hospitalization due to neutropenia or diarrhoea was 0.421 (literature, probability of febrile neutropenia) and 0.25 (expert opinion) respectively
- the probability of death from hospitalized neutropenia or diarrhoea was 0
- the risk ratios for severe neutropenia and severe diarrhoea upon dose reduction were 0.299 and 0.329 respectively (Toffoli 2010)
- the costs of full dose FOLFIRI were € 1,211.85 per chemotherapy cycle, the costs of subsequent chemotherapy were € 1,061.14 per chemotherapy cycle, the lump sum costs for chemotherapy were € 145 quarterly the costs of ang LICT1A1 test were € 60.00
- the costs of one UGT1A1 test were € 69.90
- the costs for hospitalization for severe neutropenia or severe diarrhoea followed by recovery were € 3,227.93 and € 1,528.05 per case respectively, the costs of dying in the hospital due to an adverse event was € 11,748.79 per case

- the costs of physician office visits for neutropenia or diarrhoea were € 628.36 and € 39.03 per case respectively
- Pichereau S et al. Cost-effectiveness of UGT1A1*28 genotyping in preventing severe neutropenia following FOLFIRI therapy in colorectal cancer. J Pharm Pharm Sci 2010;13:615-25. PubMed PMID: 21486535. The authors concluded that UGT1A1 genotyping at the hospital before initiation of irinotecan is cost-effective. Genotyping and prophylactic administration of granulocyte colony stimulating factor (filgrastim or lenograstim) to *28/*28 patients enables prevention of 91 cases of febrile neutropenia per 1000 patients at an acceptable cost (€ 942.80-1090.10 per case). The costs of neutropenia-related hospitalisation are estimated at € 1448.90-4126.90 per case.

Remarks:

- The assumptions used for the risk of febrile neutropenia differed between both strategies. Without the use of granulocyte colony stimulating factor, the non-genotyping strategy used an overall risk of 6.4% and the genotyping strategy an overall risk of 16.5% (0% for NM; 14.3% for IM and 100% for PM). This underestimates the costs of the non-genotyping strategy. This is offset by an underestimate of the costs of the genotyping strategy because the costs of the granulocyte colony stimulating factor are not included.

Assumptions/data used:

- Treatment of patients with FOLFIRI (irinotecan 180 mg/m² once every two weeks in combination with fluorouracil and folinic acid) for metastatic colorectal cancer.
- Parameters in the decision tree were based on the literature (genotype frequency and occurrence of neutropenia on irinotecan therapy) and on medical practice in France
- Dose reduction by 25% on occurrence of grade III-IV neutropenia and possibly delayed next cycle
- Need for hospitalisation and switch to another non-irinotecan-based regimen on development of febrile neutropenia
- *28/*28 received prophylactic granulocyte colony stimulating factor and did not develop neutropenia, *1/*1 and *1/*28 received the same treatment as non-genotyped patients
- Neutropenia occurred most commonly in the first cycle of chemotherapy
- Costs of genotyping (actual costs), chemotherapy in day hospital (only differed for the second cycle, oncolytic drugs for patients with body surface area of 1.85 m²) and hospital treatment for febrile neutropenia were included; the costs of granulocyte colony stimulating factor were not, as these were paid for by the public pharmacy.
- Gold HT et al. Cost effectiveness of pharmacogenetic testing for uridine diphosphate glucuronosyl transferase 1A1 before irinotecan administration for metastatic colorectal cancer. Cancer 2009;115:3858-67. PubMed PMID: 19517472.

The authors concluded that genotyping prior to treatment costs less (saving US\$ 272 per tested patient) and slightly improves the quality of life (by 0,073 quality adjusted day per tested patient). The results were dependent on the effectiveness of the treatment, but not on the assumptions on the risk of adverse events. Testing 10,000 patients would prevent 84 cases of severe neutropenia, including 4.5 deaths. At the limit of US\$ 100.000 per quality adjusted life year, the therapeutic effectiveness of irinotecan in PM patients after dose reduction would need to be \geq 98.4% of that of the full dose in order for genetic testing to continue to be the preferred treatment.

KNMP comment: Recent meta-analyses have not shown differences in the effectiveness of the treatment between PM and NM patients on the full dose. As PM patients do not benefit from the higher exposure to the active metabolite SN-38 at the full dose, it is unlikely that the effectiveness of the treatment decreases on dose reduction that would make the exposure equal to that of NM patients receiving the full dose. Assumptions/data used:

- Treatment of patients with FOLFIRI (irinotecan 175 mg/m² once every two weeks in combination with fluorouracil and folinic acid) for metastatic colorectal cancer
- Parameters were based on the literature and product specifications (test performance, occurrence of grade 3-4 neutropenia at the full dose and after a 25% dose reduction and contribution to quality of life)
- Irinotecan dose reduction by 25% for *28/*28 patients and full dose for the remaining patients
- Hospitalisation of 23% of the patients with grade 3-4 neutropenia and death of 0.1% of these patients
- Life expectancy of 24 months after FOLFIRI
- Costs were based on health insurance cover (Medicare) for genotyping, hospitalisation for febrile neutropenia, doctor's visits and FOLFIRI chemotherapy
- Obradovic M et al. Pharmacogenomics 2008;9:539-49 investigated the cost-effectiveness of UGT1A1-genotyping in second-line, high-dose, three-weekly irinotecan monotherapy in colon cancer.

The authors concluded that genotyping in combination with a reduced initial irinotecan dose for patients with the *28/*28 genotype was cost-saving among Caucasian and African populations. They also concluded that a three-weekly high-dose treatment regimen dosed 20% lower cost less and was more patient-friendly than a weekly low-dose treatment regimen.

Assumptions/data used:

- 50% incidence of severe neutropenia in *28/*28 heterozygous patients (source: lyer and Innocenti studies)

- 20% dose reduction decreases the risk by 30% (dose reduction source: Innocenti proposal based on differences in SN-38 exposure and similar dose reduction in practice in non-genotyped patients on development of severe neutropenia/toxicity; risk reduction source: estimate)
- Hospitalisation was required for 25% of the patients with severe neutropenia
- The adverse-event-related mortality rate among patients with febrile neutropenia was 7%
- No negative effect on survival after reduction of irinotecan dose (due to genotype or on development of severe neutropenia)
- Incremental cost effectiveness ratio (ICER) < US\$ 20,000-1,000,000 per quality adjusted life year gained is cost-effective
- Dose dependence

Two of the three meta-analyses that investigated grade 3-4 neutropenia showed that the risk of neutropenia was also elevated at low doses (Liu 2014 and Hu Clin Cancer Res 2010; Hoskins 2007). Two of the three metaanalyses that investigated grade 3-4 diarrhoea showed that the risk was elevated at high doses, but not at low doses (< 150 or 125 mg/m²) (Liu 2014 and Hu Eur J Cancer 2010; Hoskins 2007). The meta-analysis of Hoskins 2007 also did not find an elevated diarrhoea risk at high doses. For *28, the meta-analysis of Yang 2018 found the risk of severe toxicity (including neutropenia and diarrhoea) to be elevated at high doses (> 150 mg/m²), but not at low doses (< 150 mg/m²). However, for *6 this meta-analysis found the risk to be increased at both high and low doses, with the ORs being higher at low doses. The most common doses used in the Netherlands are high doses (180 of 350 mg/m²).

Various studies use various dosing regimens and combination regimens which may influence the extent and severity of the adverse events diarrhoea and neutropenia. In general, patients on weekly irinotecan dosing regimens develop diarrhoea more frequently and those on three-weekly regimens develop neutropenia more frequently. [Fuchs et al. J Clin Oncol 2003;21:807-14, Vanhoefer et al. J Clin Oncol 2001;19:1501-18.] Three-weekly and two-weekly dosing regimens are most common in the Netherlands.

	grade 1 = B	grade 2 = C	grade 3 = D	grade 4 = E	grade 5 = F
Diarrhoea	Increased stool frequency by < 4; slight increase in stoma output	Increased stool frequency by 4-6; moderate increase in stoma output; no effect on daily activities	Increased stool frequency by ≥ 7; incontinence; IV fluid ≥ 24 hours; hospitalisation; severe increase in stoma output; effect on daily activities	Life-threatening consequences (e.g. haemodynamic collapse)	Death
Neutropenia	> 1.5x10 ⁹ /L	< 1.5-1.0x10 ⁹ /L	< 1.0-0.5x10 ⁹ /L	< 0.5x10 ⁹ /L	Death
Leukopenia	> 3.0x10 ⁹ /L	< 3.0-2.0x10 ⁹ /L	< 2.0-1.0x10 ⁹ /L	< 1.0x10 ⁹ /L	Death
Thrombocytope nia	> 75x10 ⁹ /L	75-50x10 ⁹ /L	50-25x10 ⁹ /L	< 25x10 ⁹ /L	Death
Febrile neutropenia	-	-	Present	Life-threatening consequences (e.g. septic shock, hypotension, acidosis, necrosis)	Death

National Cancer Institute Common Toxicity Criteria (NCI-CTC)

ULN = upper limit of normal

Date of literature search: 19 March 2021.

	Genotype	Code	Gene- drug interaction	Action	Date
KNMP Pharmacogenetics	*1/*28	4 F	Yes	No	7 June 2021
Working Group decision	*28/*28	4 F	Yes	Yes	
	IM	4 E	Yes	No	
	PM	4 E	Yes	Yes	

Mechanism:

Irinotecan is a prodrug that is converted predominantly by carboxylesterases to the active metabolite SN-38, which has 100-1000-fold higher activity than irinotecan itself. Irinotecan is also metabolised by CYP3A4/5 to inactive metabolites.

SN-38 is glucuronidated to the inactive metabolite SN-38-glucuronide by glucuronosyltransferases. SN-38 is predominantly metabolised by UGT1A1 and also by UGT1A6, UGT1A7, UGT1A9 and UGT1A10.

A UGT1A1 genetic polymorphism may change the plasma concentration of irinotecan, SN-38 and SN-38 glucuronide.

Clinical Implication Score:

Table 1: Definitions of the available Clinical Implication Scores

Potentially	PGx testing for this gene-drug pair is potentially beneficial. Genotyping can be	0-2 +
beneficial	considered on an individual patient basis. If, however, the genotype is available, the DPWG recommends adhering to the gene-drug guideline	
Beneficial	PGx testing for this gene-drug pair is beneficial. It is advised to consider genotyping the patient before (or directly after) drug therapy has been initiated to guide drug and dose selection	3-5 +
Essential	PGx testing for this gene-drug pair is essential for drug safety or efficacy. Genotyping must be performed before drug therapy has been initiated to guide drug and dose selection	6-10 +

Table 2: Criteria on which the attribution of Clinical Implication Score is based

Clinical Implication Score Criteria			Given Score
Clir	nical effect associated with gene-drug interaction (drug- or diminished efficacy-induced)		
•	CTCAE Grade 3 or 4 (clinical effect score D or E)	+	
•	CTCAE Grade 5 (clinical effect score F)	++	++
Lev	el of evidence supporting the associated clinical effect grade \geq 3		
•	One study with level of evidence score ≥ 3	+	
•	Two studies with level of evidence score ≥ 3	++	
•	Three or more studies with level of evidence score ≥ 3	+++	+++
Nur	nber needed to genotype (NNG) in the Dutch population to prevent one clinical effect grade		
≥ 3			
•	100 < NNG ≤ 1000	+	
•	10 < NNG ≤ 100	++	++
•	NNG ≤ 10	+++	
PG	c information in the Summary of Product Characteristics (SmPC)		
•	At least one genotype/phenotype mentioned	+	
OR			
•	Recommendation to genotype	++	+
OR			
•	At least one genotype/phenotype mentioned as a contra-indication in the corresponding section	++	
Total Score: 10+		8+	
Corresponding Clinical Implication Score:		Essential	