

HLA: ribavirin 2343

CI = confidence interval, HCV = hepatitis C virus, HIV = human immunodeficiency virus, HLA = human leukocyte antigen, NS = non-significant, OR = odds ratio, RR = relative risk, S = significant, SmPC = summary of product characteristics

Brief summary and justification of choices:

HLA-B44

Romero-Gómez 2003 points to a less frequent sustained virological response to ribavirin for HLA-B44-negative patients (i.e. a less frequent sustained virological response to treatment with interferon alpha and ribavirin (n = 105), but not to treatment with interferon alpha alone (n = 143)). However, two larger studies found no significant effect of HLA-B alleles on response to treatment with interferon alpha and ribavirin (Vidal-Castiñeira 2014 (811 patients), Vidal-Castiñeira 2012 (407 patients)). In addition, also none of the studies after 2008 with less than 300 patients, which were not included in this risk analysis, confir-med a role for HLA-B44. For this reason, the KNMP Pharmacogenetics Working Group concluded that there is insufficient evidence for a gene-drug interaction (no/no-interaction). You can find an overview of the observed clinical effects in the background information text of this gene-drug interaction in the KNMP Kennisbank. You might also have access to this background information text via your pharmacy or physician electronic decision support system.

HLA-C

Results for HLA-C found in 3 studies were inconsistent. Suppiah 2011 found a less frequent response to interferon alpha and ribavirin for patients with the HLA-C2/C2 genotype and no effect of the HLA-C1/C1 and HLA-C1/C2 genotypes. However, Vidal-Castiñeira 2012 found this effect to be clinically insignificant. In this study, the HLA (and KIR) genotypes did not contribute significantly to a prediction model of treatment response. Vidal-Castiñeira 2014 found HLA-C*07 to have a positive influence on treatment response to interferon alpha and ribavirin and HLA-C*03 and HLA-C*05 to have no effect. However, Suppiah 2011 found HLA-C*03 to have a positive effect, HLA-C*05 to have a negative effect, and HLA-C*07 to have no effect. Although combination with genetic variants in the HLA-C ligands, the natural killer cell immunoglobulin-like receptors (KIRs), might improve strength and consistency of the effects, studies only investigated ribavirin in combination with interferon alpha. For this reason, there is no evidence that the effects are effects on ribavirin treatment, and so also hold for combinations of ribavirin with the newer antihepatitis C drugs, and not on interferon alpha treatment. In addition, considering the multiple reports of HLA affecting spontaneous hepatitis C virus clearance, there is actually no firm evidence that the effects are treatment dependent. They might just reflect the contribution of the host immune system to virus clearance. In the latter case, choosing an alternative drug will not resolve the problem. Finally, choosing an alternative for interferon alpha and ribavirin becomes less and less an option anyhow, because interferon alpha plus ribavirin is not the standard therapy for hepatitis C anymore. Because of the better efficacy and fewer adverse effects, the newer antihepatitis C medicines (with or without ribavirin) are generally preferred, independent of the HLA-profile of the patient. This means that they generally will have been considered before the patient was started on interferon alpha and ribavirin. Based on both the limited evidence for an effect of HLA-C on treatment response and on the probably limited clinical utility of HLA-C genotyping if this evidence would become firm in the future, the KNMP Pharmacogenetics Working Group decided not to introduce a new HLA-ribavirin interaction based on the HLA-C data.

HLA-DRB1*04, HLA-E*0103, HLA-DMB rs23544 A>G, HLA-DMA rs1063478 C>T, HLA rs4273729 G>C, HLA-DOB rs2856997 T>G, HLA-DOA rs2284191 G>A, HLA-DOA rs1044429 G>A

There is only one (large) study showing an effect of each of these HLA alleles or polymorphisms on the efficacy of the treatment. A second study confirming this effect is lacking. In addition, it is not possible to determine from the studies whether ribavirin or interferon alpha is responsible for this association (or whether the association is treatment independent). As for HLA-C, the KNMP Pharmacogenetics Working Group decided not to introduce new HLA-ribavirin interactions based on the data on these HLA alleles or polymorphisms, because of both the limited evidence for an effect on treatment response and on the probably limited clinical utility of HLA genotyping if this evidence would become firm in the future.

Source	Code	Effect	Comments
ref. 1	4	346 chronic hepatitis C patients were treated with peginter-	Author's conclusion:
Yao Y et al.		feron alpha and ribavirin for 48 weeks. All patients were	"Genetic variations
Association		infected with hepatitis C virus genotype 1b.	at HLA-DOA
between human		Sustained virological response was defined as no detectable	rs1044429 and

leucocyte antigen-DO polymorphisms and interferon/ribavirin treatment response in hepatitis C virus type 1 infection in Chinese population: a prospective study. BMJ Open 2018;8:e019406. PubMed PMID: 29654010. hepatitis C virus RNA in serum 24 weeks after the end of treatment. Rapid virological response was defined as no detectable hepatitis C virus RNA in serum 4 weeks after start of treatment. Complete early virological response was defined as no detectable hepatitis C virus RNA in serum after 12 weeks of treatment.

ORs were adjusted for age, sex, baseline hepatitis C virus RNA level and glucose. False discovery rate corrections were applied for multiple comparisons.

The gene polymorphism rs1044429 is HLA-DOA rs1044429 G>A, rs2284191 is HLA-DOA rs2284191 G>A and rs2856997 is HLA-DOB rs2856997 T>G.

Results:

Homozygous variant versus heterozygous versus homozygous wild type:

% of patients with sustained virological response: 95% CI OR value for wild type rs1044429 1.90 (S) 1.25-2.89 58% 2.70 (S) 1.59-4.61 rs2284191 60% rs2856997 0.63 (S) 0.46-0.87 76%

p-values were also significant after false discovery rate corrections, and multivariate regression analysis showed each of the three polymorphisms to be an independent predictive factor (S).

The difference was also significant for (homozygous variant + heterozygous) compared to homozygous wild type and for heterozygous compared to homozygous wild type. The comparison between homozygous variant and homozygous wild type only reached significance for rs2856997.

Interaction analysis showed the association between rs2856997 and sustained virological response to be stronger in females than in males (S).

Baseline viral load did not differ between the genotypes. However, for rs2284191 (homozygous variant + heterozygous) compared to homozygous wild type, the viral load was lower after 4, 12, 24 and 48 weeks of therapy (S), but not after 8 weeks. For rs1044429 (homozygous variant + heterozygous) compared to homozygous wild type, the viral load was only lower after 12 weeks of therapy (S). For rs2856997 (homozygous variant + heterozygous) compared to homozygous wild type, there were no differences in viral load at any time point (NS).

The percentage of patients with a response decreased with the number of risk genotypes (rs1044429 homozygous wild type, rs2284191 homozygous wild type and rs2856997 homozygous variant):

1 risk genotype: OR = 0.38 (95% CI: 0.17-0.83) 2 risk genotypes: OR = 0.22 (95% CI: 0.10-0.49)

3 risk genotypes: OR = 0.22 (95% CI: 0.10-0.49)

% of patients with rapid virological response:

70 of patients with rapid virological response.					
	OR	95% CI	value for wild type		
rs1044429		trend for an OR > 1 (p = 0.074) (NS)			
rs2284191	2.44 (S)	1.52-3.91	42%		
rs2856997	0.72 (S)	0.53-0.98	57%		

For all three polymorphisms, differences were significant for (homozygous variant + heterozygous) compared to homozygous wild type and for heterozygous compared to homozygous wild type. The comparison between homozygous variant and homozygous wild type did not reach

HLA-DOB rs2284191 and rs2856997 were independent predictors of hepatitis C virus treatment response in the Chinese Han population."

DOA rs1044429 GA and AA: AA#

DOA rs2284191 GA and AA: AA#

DOB rs2856997 TG and GG: D

ref. 1, continua-		significanc				
tion		significanc	e. nts with complete (arly virological ro	enonee.	
tion		% or patier	OR	95% CI	value for	
			OK	95 /6 CI	wild type	
		ro1044420	1 72 (\$)	1 12 2 65	61%	
		rs1044429		1.12-2.65		
		rs2284191		1.63-4.94	63%	
		rs2856997		0.50-0.96	76%	
			s were significant f			
		, , , , ,	ous) compared to h	, .	• •	
			n between heteroz			
			eached significand			
			. The comparison	•	_	
		for rs28569	mozygous wild typ	e only reached Si	ignincance	
		101 1520303	991.			
		Notes No eig	mificant affacts on	austainad viralan	ical raanan	
		_	gnificant effects on	•	•	
			nd for DOA rs4080		·	
			369150, rs86567,	·		
			79, and for DOB rs		∠၁ၓ,	
		rs20/14/2,	rs7383287 and rs2	20/14/5.		
		N	41			
			uthors previously			
			genotype influence			
			on and the HLA-Do	•		
		•	taneous viral clear	, -		
			ntigen presentatio	-		
			y to hepatitis C vir		ance: a case	
			y. BMC Infect Dis			
ref. 2	4		hepatitis C patien			Author's conclusion:
Sakhaee F et al.		•	2a and ribavirin fo	· ·		"Beside IL28B SNPs
The impact of			or 24 weeks (hep			and HLA rs4273729,
genetic variation			(42.9%) were infe			IFNL4 ss469415590
in IL28B, IFNL4			a, 80 (15.4%) with			was a powerful
and HLA genes			ith hepatitis C virus		1 100	predictor factor for rapid, complete
on treatment res-			n hepatitis C virus irological response		l rooponoo	early and sustained
ponses against chronic hepatitis			te early virological		•	virologic response.
C virus infection.		Yao 2018.	le early virological	response were u	enneu as m	l _ '.
Infect Genet Evol			etermined with mu	Itivariate logistic i	rearession	Genotyping these SNPs may be a
2017;54:330-7.			olymorphism HLA			helpful priority in the
PubMed PMID:		G>C.	orymorphiom rie/ (10-127 07 20 10 11 127	(10-12/0/20	treatment of patients
28739427.			an association bety	veen henatitis C v	virus (HCV)	with hepatitis C virus
			and HLA rs427372	•	` ,	infection, especially
			ents having the HL			in countries where
			for HCV genotype			access to triple or
			or HCV genotype 2			double therapy with
			e was no associati			a viral protease inhi-
			1273729 genotype			bitor is limited."
			0 11			
		Results:				
			mpared to GG (wil			
			nts with sustained		se:	
	4.5-5	HCV	CC	GC	value	
	rs4273729	genotype			for GG	
	GC and	all	x 0.47	x 0.70	83%	
	CC: D		S for CC versus	GC versus GG		
		1a	OR = 0.41 (95%	CI: 0.25-0.67) (S)		
		1b		CI: 0.04-0.39) (S)		
		2	NS	, , , /		
		3a	OR = 0.58 (95%	CI: 0.13-0.87) (S)		
		% of patier	nts with rapid virolo			
		HCV	CC	GC	value	
		genotype			for GG	
			3			

ref. 2, continua-		all	x 0.45	x 0.62	68%	
tion			S for CC versus (GC versus GG		
		1a	١	is		
		1b		CI: 0.36-0.73) (S)		
		2		IS		
		3a		IS		
				arly virological resp		
		HCV genotype	CC	GC	value for GG	
		all	x 0.63	x 0.81	85%	
			S for CC versus (
		1a	OR = 0.82 (95%	CI: 0.56-0.98) (S)		
		1b		CI: 0.17-0.61) (S)		
		2		IS		
		3a	OR = 0.31 (95%	CI: 0.21-0.57) (S)		
ref. 3 Chen H et al. Polymorphisms of HLA-DM on treatment res- ponse to interfe- ron/ribavirin in patients with chronic hepatitis C virus type 1	4	genotype intans and Afristudy of spot data from m 45) and in C HLA class II ce of HCV a patients. J hetween hers4273729 gin this study rs4273729. 336 chronic ron alpha arted with hep Sustained v and complet Yao 2018. ORs were a RNA level, γ lets, and α-f	fluenced spontaned cans (Duggal P et cans (Dugga	I that the HLA rs42 pus viral clearance al. Genome-wide an of hepatitis C virus Intern Med 2013; A novel polymorphed with spontaneous erferon treatment in 1:301-5). Also the additional of the continuous entitle of the continuous entitue entitle of the continuous entitue entitle of the continuous entitle	in Europe- association us infection: 158:235- hism near us clearan- n Chinese association HLA ents found fect of HLA peginterfe- were infec- esponse, ined as in s C virus 3, T4, plate-	Author's conclusion: "The genetic variation of HLA-DMA rs1063478 and HLA-DMB rs23544 are associated with the treatment outcomes in the Chinese Han population."
infection. Int J Environ Res Public Health		C>T and rs2 Results:	23544 is HLA-DMB	rs23544 A>G.		
2016;13:E1030.			us variant versus h	neterozygous versu	is homo-	
PubMed PMID:		zygous wile				
27775635.	DMA	% of patier		virological response		
	rs1063478		OR	95% CI	value for	
	CT and TT: AA#	rs1063478	1.96 (S)	1.29-2.96	wild type 59%	
	11. AA"	rs23544	1.78 (S)	1.23-2.56	56%	
	DMB		` ,	sis showed each of		
	rs23544 AG and			pendent predictive		
	GG: AA#	The differe		ficant for (homozyg		
				d to homozygous v		
				eared to (heterozyg eterozygous compa		
				or homozygous vari		
			to homozygous wil			
		The percer	ntage of patients w	ith a response increvariants of rs1063		
			iant: OR = 2.27 (9	95% CI: 1.10-4.63)		
			iants: OR = 2.91 (9			

ref. 3, continua-		3-4 gene variants	s: OR = 45 1	2 (95% CI: 5 40-3	370.75)	
tion		% of patients with			5.0.10)	
		70 or patients with	OR	95% CI	value for	
				30 /0 01	wild type	
		rs1063478	NS	1	48%	
		rs23544	NS		46%	
		For rs1063478, tl	L	was significant f		
		gous variant com				
		wild type) (OR =				
		homozygous vari				
		showed a trend for				
		For rs23544, non				
		(NS).				
		% of patients with	n complete e	arly virological re	sponse:	
			OR	95% CI	value for	
					wild type	
		rs1063478	1.63 (S)	1.07-2.46	63%	
		rs23544	NS		68%	
		For rs1063478, tl	he difference	was also signific	cant for	
		(homozygous vai	riant + heter	ozygous) compa	red to	
		homozygous wild	type (OR =	1.70; 95% CI: 1.0	02-2.82)	
		(S), while both ho				
		zygous wild type				
		zygous wild type	showed a tre	end for an OR > 1	1 (p =	
		0.053 and 0.092,				
		For rs23544, the				
		gous variant com				
		wild type) (OR =				
		homozygous vari	•	, ,		
		showed a trend for	or an OR > 1	(p = 0.081) (NS)).	
		Note: No significar				
		found for DM-poly	morphisms r	s1050391 and rs	3135029.	
		N T				
		Note: The authors				
		rs1063478 genoty				
		virus infection (Huppresentation-relate				
		titis C virus and vir Infect Dis 2014;14		. a case control s	study. DIVIC	
ref. 4	4	811 chronic hepati		s were treated wi	th neginterfe-	Author's conclusion:
Vidal-Castiñeira	-	ron alpha-2a or alp				"KIR2DL3*001-HLA-
JR et al.		patients were infed				C1 was also associ-
Diversity of killer		Sustained virologic				ated with sustained
cell immunoglo-		HLA-C*07 belongs			40 20 .0.	viral response
bulin-like recep-		The KIR2DL3 sub			ermined in	(24.5% vs. 45.7%)."
tor (KIR) genoty-		249 patients.	,,			,
pes and KIR2-						
DL2/3 variants in		Results:				
HCV treatment		HLA-C*07 allele	frequency in	patients with sus	tained viro-	
outcome.		logical response	compared to	patients without	sustained	
PLoS One		virological respor	nse (HLA-C*(07 allele frequenc	cy =	
2014;9:e99426.		17.2%):				
PubMed PMID:	C*07: AA#	OR = 1.49 (95%				
24927414.		The association v				
		combination with				
		like receptor gen				
		1.61-2.94) (S); ca				
		45.0% in respond				
		ders). There was				
		HLA-C*07 in com			ponaers	
		compared to non	-responders	(INO).		

ref. 4, continua-		Carrier frequency of other	r KID LII ^	combinations	in	
tion		patients with sustained v				
don						
		patients without sustaine				
		combination or geno-	OR	95% CI	value	
		type			for	
					non-	
					SVR	
		KIR2DS2-HLA-C1	0.68 (S)	0.51-0.92	51.2%	
		KIR2DL2/2DL2-HLA-	NS		4.1%	
		C1/C1				
		KIR2DL2/2DL2-HLA-	0.35 (S)	0.19-0.64	12.2%	
		C1/C2				
		KIR2DL2/2DL2-HLA-	NS		2.2%	
		C2/C2				
		KIR2DL2/2DL3-HLA-	NS		14.9%	
		C1/C1				
		KIR2DL2/2DL3-HLA-	NS		19.1%	
		C1/C2				
		KIR2DL2/2DL3-HLA-	NS		10.1%	
		C2/C2				
		KIR2DL3/2DL3-HLA-	2.94 (S)	1.85-4.76	6.4%	
		C1/C1	, (-)			
		KIR2DL3/2DL3-HLA-	NS	1	18.5%	
		C1/C2	110		10.070	
		KIR2DL3/2DL3-HLA-	NS		10.5%	
		C2/C2	110		10.570	
		KIR3DL1/S1-HLA-	NS			
		Bw480I/80T	INO			
		KIR2DL3*001-HLA-C1	2.70 (S)	1.54-4.55	24.0%	
			NS	1.54-4.55	41.1%	
		KIR2DL3*002-HLA-C1		and KIDODI		
		For KIR2DL2/2DL2, KIR2				
		but not for KIR2DS2, the		•	gnilicant	
		for all HLA genotypes/ge	ne variants	together.		
	D. A A	N. 6				
	B: AA	Note: Genotyping was for				
	0*00 4 4	None of the HLA-B alleles				
	C*03: AA	HLA-C alleles other than I	•	-		
	C*05: AA	C*05) showed an associate	tion with su	stained virolo	gical	
		response.				
		Note: Previous studies she				
		with hepatitis C virus clear				
		Distinct MHC class I and I	I alleles are	associated v	vith	
		hepatitis C viral clearance	, originating	from a single	e source.	
		Hepatology 2004;40:108-	14) and vira	I load (Tseng	KC et al.	
		Effect of human leukocyte	antigen cla	iss I and II all	eles on	
		hepatitis C viral load amor				
		Southern Taiwan. Hum Im		·		
ref. 5	4	321 patients co-infected w				Author's conclusion:
Guzmán-Fulgen-		treated with peginterferon				"The HLA-E*0101
cio M et al.		for 48-72 weeks (hepatitis				allele was associa-
HLA-E variants		weeks (hepatitis C virus g				ted with increased
are associated		rules were applied for indi-	viduals with	suboptimal	/irological	odds of HCV clea-
with sustained		response after 12 weeks of				rance and could
virological		were infected with hepatiti				help to predict
response in		patients (32.5%) with hepa				sustained virological
HIV/hepatitis C		Sustained virological resp				response among
virus-coinfected		se were defined as in Yao				HIV/HCV-coinfected
patients on hepa-		was defined as a drop in v				patients on HCV
titis C virus thera-		tion).	,	,		therapy."
py.		Bonferroni correction for n	nultiple com	parisons was	s applied.	
AÍDS		ORs per HLA-E*0103 alle				
2013;27:1231-8.		adjusted for the most sign				
, 231 31	I	,		,	7	1

PubMed PMID:		age, HCV g	enotype, HCV-RNA	at baseline at lea	ast 500,000	
23811951.		IU/ml, signif	ficant fibrosis, IL28E	3 rs8099917 TT ge	enotype,	
			active antiretroviral			
ref. 5, continua-			h HLA-E*0103 had			
tion			enotype 2 or 3 (10.			
			LA-E*0101/*0103, a			
			the favourable IL28			
		`	A-E*0103/*0103, 60			
			\-E*0101/*0101), wl		ant predic-	
		tive factors	of virological respo	nse.		
		Results:				
			mpared to HLA-E*(101/*0101 (wild to	(no):	
			nts with sustained v			
		HCV or	*103/*103	*101/*103	value	
		IL28B	100/ 100	101/ 103	for	
		genotype			*0101/	
		gonetype			*0101	
		all	x 0.28	x 0.78	70%	
			S for *0103/*0103			
	5 to 100 5		*0103 versus *010	01/*0101		
	E*0103: D		OR per *0103 alle			
			CI: 0.32-0.74) (S)	,		
		HCV 1/4	x 0.39	x 0.68	57%	
			S for *0103/*0103			
			*0103 versus *010			
			OR per *0103 alle			
			CI: 0.40-0.98) (S)	,		
		HCV 2/3	x 0.00	x 0.89	93%	
			S for *0103/*0103	versus *0101/		
			*0103 versus *010			
			OR per *0103 alle	ele = 0.15 (95%		
			CI: 0.05-0.46) (S)			
		IL28B TT	x 0.41	x 0.96	72%	
			S for *0103/*0103			
			*0103 versus *010			
			OR per *0103 alle			
			CI: 0.25-0.86) (S)			
		IL28B	x 0.22	x 0.53	62%	
		GT/GG	S for *0103/*0103			
			*0103 versus *010			
			OR per *0103 alle CI: 0.19-0.75) (S)	sie = 0.36 (95%		
		There was	no significant inter	action between HI	A-E and	
			otypes regarding re		LA L and	
			nts with rapid virolo			
		HCV or	*0103/*0103	*0101/*0103	value	
		IL28B	1.03/ 0.00	0.017 0700	for	
		genotype			*0101/	
					*0101	
		all	x 0.27	x 0.57	46%	
			S for *0103/*0103			
			*0103 versus *010	01/*0101		
		HCV 1/4	x 0.44	x 0.40	33%	
			S for *0103/*0103	versus *0101/		
			*0103 versus *010	01/*0101		
		HCV 2/3	x 0.00	x 0.68	71%	
			S for *0103/*0103			
			*0103 versus *010	01/*0101		
		IL28B TT	x 0.34	x 0.67	49%	1
			S for *0103/*0103			1
			*0103 versus *010	01/*0101		
<u> </u>	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	·

rof E continue		11 000	v 0 04	1. 0	14	440/	
ref. 5, continua- tion		IL28B GT/GG	x 0.24 S for *0103/*(*0103 versus		s *0101/	41%	
		% of patier	nts with early v			1	
		HCV or IL28B genotype	*0103/*0103		1/*0103	value for *0101/ *0101	
		all	x 0.68 S for *0103/*(*0103 versus		s *0101/	79%	
		HCV 1/4	trend for a de (NS)	ecrease (p	= 0.059)	69%	
		HCV 2/3	NS			96%	93%
		IL28B TT	NS			81%	72%
		IL28B GT/GG	x 0.54 S for *0103/*(*0103 versus		s *0101/	71%	
ref. 6 Vidal-Castiñeira JR et al. A predictive model of treat- ment outcome in patients with chronic HCV infection using IL28B and PD-1 genotyping. J Hepatol 2012;56:1230-8. PubMed PMID: 22322230.	4	Note: A prev E*0101 gen virus infection genotype af (HCV) infect recognition secreting hut 1397-401). (HCV) genotype points to a tage. 407 chronic feron alpha-according to (76.9%) were (2.0%) with hepatitis C virus genotywhose hepatith and 2 log at classified as RNA in seruin the non-rowas defined HLA genotygenotype of tors (KIRs), Results: Carrier free patients wi	typing was for vious study sho otype might come (Schulte Defects the naturation and is assorted from the patitis C paragraph of the patitis C virus and the patitis C virus genotype defected with hepatitis C virus Refer 12 weeks of an on-responder group as in Yao 201 pe was determed the natural kill which are the foundation of the patients with the patient	HLA-E*010 Dowed that to offer protect al. The Hall course of ociated with ived peptid recells. J Infinition betwo here and ribavious genotype hepatitis (aus genotype) and 13 the treatment was NA levels hof therapy: ers. Patient of the treatment from the treatment of the treatm	treated with rin for 24-48 oe. 313 patier virus genoty e 2, 73 (17.99) (3.2%) with halted in patied here patients with hepatitis ad not declinate where alsed virological mbination with hunoglobulin-lala-C.	01/HLA- patitis C A-E(R) virus ricted on-gamma- i;200: C virus his study genoty- peginter- weeks hts ype 1, 8 %) with epatitis C ents ed greater is C virus is in the like recep-	Author's conclusion: "In this prediction analysis of HCV treatment outcome, the KIR and HLA genotypes were not significant."

maf 0	1	B. 8. 141	1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(15)	1
ref. 6, continua-			logistic regression			
tion	D. A.A		HLA-C1/C1 and K			
	B: AA		endent predictors o			
	C: AA		e KIR and HLA ge			
		(NS).	to a prediction mo	uei oi iieaiiileili les	phouse	
		(NO).				
		Note: Conety	ning was for all UI	A D and LI A Cw.	allalaa	
ref. 7	4		ping was for all HL			Author's conclusion:
Suppiah V et al.	4		epatitis C patients d ribavirin for 48 we			"Genotyping for
IL28B, HLA-C,			alted in patients wh			IL28B, HLA-C, and
and KIR variants			t declined greater			KIR genes improves
additively predict			atients were infect	O		prediction of HCV
response to		genotype 1.		·		treatment respon-
therapy in chro-			ological response v	was defined as in Y	′ao 2018.	se."
nic hepatitis C		HLA-Cw*03 a	and HLA-Cw*07 be	long to the HLA-C	l group,	
virus infection in			elongs to the HLA			
a European			iller cell immunoglo	bulin-like receptor	s (KIRs)	
cohort: a cross-		are the ligand	ls of HLA-C.			
sectional study.		5 1				
PLoS Med		Results:		ith acceptain and coincid	e!eel	
2011;8:e1001092 PubMed PMID:			uency in patients w			
21931540.		HLA allele	VR) compared to p	95% CI	value	
21331340.		or	OK	9576 CI	for	
		genotype			non-	
		genetype			SVR	
	Cw*03:	Cw*03	1.64 (S)	1.20-2.27	9.2%	
	AA#		The association v			
				icant in combina-		
			tion with both KIF	R2DL2 (OR =		
			2.13 (95% CI: 1.3			
			carrier frequency			
			tion 16.7% in res	•		
			red to 8.5% in no			
			and KIR2DL3 (O	R = 2.04 (95%); carrier frequen-		
			cy of the combina			
			responders comp			
			non-responders).			
	Cw*05: D	Cw*05	0.70 (S)	0.49-1.0	10.4%	
			The association v			
			group) was only			
			combination with			
			0.51 (95% CI: 0.3			
			carrier frequency			
			tion 10.9% in res			
			red to 19.5% in n			
			not in combinatio	n with KIRZDLZ		
	Cw*07: AA	Cw*07	(NS). NS		34.0%	
	C1/C1: AA	C1/C1	NS		38.9%	
	C1/C2: AA	C1/C2	trend for an incre	ase $(p = 0.084)$	41.5%	
	01/02:700	01/02	(NS)	ασο (p = σ.σσ+)	41.070	
	C2/C2: D	C2/C2	0.66 (S)	0.45-0.95	19.7%	
			The association			
			only significant in			
			with KIR2DL3/2D	L3 (OR = 0.52		
			(95% CI: 0.30-0.9			
			frequency of the			
			5.3% in responde			
			9.6% in non-resp			
			combination with	NIKZULZ/ZUL3		
			(NS).			

ref. 7, continuation		The association was also significant in association with KIR2DS1 (OR = 0.52 (95% CI: 0.29-0.94) (S); carrier frequency of the combination 4.7% in responders compared to 8.7% in non-responders). Note: Genotyping was for all HLA-C alleles. None of the 13 observed HLA-C alleles other than HLA-Cw*03 and HLA-Cw*05 showed an association with sustained virological response. Note: Previous studies showed that HLA-C1 and its receptor KIR2DL3 were associated with spontaneous hepatitis C virus clearance (Khakoo SI et al. HLA and NK cell inhibitory receptor genes in resolving hepatitis C virus infection. Science 2004;305:872-4 and Knapp S et al. Consistent beneficial effects of killer cell immunoglobulin-like receptor 2DL3 and group 1 human leukocyte antigen-C following exposure to hepatitis C virus. Hepatology 2010;51:1168-75). When comparing 228 persons with spontaneous virus clearance to the 583 chronic hepatitis C patients, the authors of this study did not find a significant difference in the frequency of the C1/C1, C1/C2 and C2/C2 genotypes, but they	
ref. 8 Jiao J et al. Hepatitis C virus genotypes, HLA- DRB alleles and their response to interferon-alpha and ribavirin in patients with chronic hepatitis C. Hepatobiliary Pancreat Dis Int	DRB1*04: AA#	found a trend for a lower C2/C2 frequency in persons with spontaneous virus clearance (p = 0.084; 12.3% versus 17.0%) (NS) (p = 0.07; 4.3% versus 7.7% in persons with KIR2DL3/KIR2DL3). A total of 25 Chinese patients were treated for 6-12 months with interferon-alpha (3.10 ⁶ IU 3x per week) + ribavirin (1.2 g/day). Follow-up lasted 1-1.5 years. A possible link between HLA-DRB polymorphisms and the percentage of patients with a complete response was studied. More HLA-DRB1*07-positive than HLA-DRB1*04-positive patients had a complete or partial response (S; 67% versus 0% and 33% versus 20% respectively). Patients with a complete response were less likely to be HLA-DRB1*04-positive than patients without a response (0% versus 36%; OR = 0.03 (S; 95% CI 0.0009-0.9407)).	Authors' conclusion: "DRB1*07 allele was found to be closely related to complete response whereas DRB1*04 showed no response at all."
ref. 9 Romero-Gómez M et al. HLA class I B44 is associated with sustained response to inter- feron + ribavirin therapy in pa- tients with chro- nic hepatitis C. Am J Gastroen- terol 2003;98:1621-6.	B44- negative: D DRB1*03: AA	A total of 143 patients were treated with interferon-alpha 3x per week for one year and 105 patients with interferon-alpha (3.10 ⁶ IU 3x per week) + ribavirin (1.0 - 1.2 g/day). A possible link between HLA polymorphisms and the percentage of patients exhibiting a sustained virological response (i.e. no detectable hepatitis-C-RNA in the serum 6 months after therapy) was studied. More HLA-B44-positive than HLA-B44-negative patients had a sustained virological response to interferon + ribavirin (76.9% versus 41.7%; S; increase by 84%). Following correction, HLA-B44 was found to be an independent variable (OR = 4.84 (95% CI = 1.31-17.8)). For patients who were only treated with interferon, the percentage of HLA-B44-positive patients did not differ significantly between the patients with and without a sustained virological response. Fewer HLA-DRB1*03-positive than HLA-DRB1*03-negative patients had a sustained virological response to interferon + ribavirin (30.4% versus 56.1%; S; decrease by 45%). However, following correction, HLA-DRB1*03 was not an independent variable.	Authors' conclusion: "HLA class I B44 is related to a higher rate of SR in combination therapy but not in interferon monotherapy, whereas HLA class II, tumor necrosis factor-α -238A or -308A seem not to influence response to the antiviral therapy."

ref. 9, continua-	A29, A33,	No significant association was found for 44 other HLA anti-	
tion	B7, DRB1-	gens, including HLA-A29, A33, B7, and DRB1*11.	
	*11 and 39	The authors indicated that previous studies found an effect	
	other alle-	of HLA class II polymorphisms on both the spontaneous	
	les: AA	clearance of hepatitis C infection and the response to inter-	
		feron-α.	
		NOTE: The phenotype, not the genotype, was determined	
		for HLA-A and HLA-B.	

AA#: A negative effect on the efficacy of the treatment was found, but it is not possible to determine from the study whether ribavirin or interferon-alpha is responsible for this association.

Risk group	-

Comments:

- For the period after 2008 only studies with more than 300 patients were included in the risk analysis. Smaller studies did not contribute enough to the evidence. One study with more than 300 patients was not included in the risk analysis, because the article was not available in the Netherlands (de Rueda PM et al. Importance of host genetic factors HLA and IL28B as predictors of response to pegylated interferon and ribavirin. Am J Gastroenterol 2011;106:1246-54. PubMed PMID: 21670772). In addition, Smith 2011 was not included in the risk analysis, because it concerns the same patients as Suppiah 2011, but examines the effect of HLA-C only in combination with IL28B polymorphisms (Smith KR et al. Identification of improved IL28B SNPs and haplotypes for prediction of drug response in treatment of hepatitis C using massively parallel sequencing in a cross-sectional European cohort. Genome Med 2011;3:57. PubMed PMID: 21884576).
- The SmPC Copegus (ribavirin) 20-01-19 does not contain any information.
- <u>Possible relationship between HLA polymorphisms and spontaneous hepatitis C virus clearance</u>: Multiple studies have shown that gene variants in the HLA region were correlated with spontaneous clearance of the hepatitis C virus:
 - the review Rauch A et al. Host genetic determinants of spontaneous hepatitis C clearance. Pharmacogenomics 2009;10:1819–37.
 - the editorial on HLA-DPA1 and HLA-DPB1 Tamori A et al. HLA class II associated with outcomes of hepatitis B and C infections. World J Gastroenterol 2013;19:5395-401.
 - the study on HLA-DMA, HLA-DOA, and HLA-DOB Huang P et al. Genetic variants in antigen presentationrelated genes influence susceptibility to hepatitis C virus and viral clearance: a case control study. BMC Infect Dis 2014;14:716.
 - the study reporting an association for HLA-DQB1*0301 and for HLA rs4273729 in Europeans and Africans Duggal P et al. Genome-wide association study of spontaneous resolution of hepatitis C virus infection: data from multiple cohorts. Ann Intern Med 2013;158:235-45.
 - the meta-analysis on DQB1*0301 and DRB1*1101 Hong X et al. Human leukocyte antigen class II DQB1 *0301, DRB1*1101 alleles and spontaneous clearance of hepatitis C virus infection: a meta-analysis. World J Gastroenterol 2005;11:7302-7.
 - the study on HLA-DRB1*1101, HLA-DQB1*0301, HLA-DRB1*0701, and HLA-DRB4*0101 Thursz M et al. Influence of MHC class II genotype on outcome of infection with hepatitis C virus. The Lancet 1999;354: 2119-24.
 - the study on HLA rs4273729 in Chinese Xu Y et al. A novel polymorphism near HLA class II region is associated with spontaneous clearance of HCV and response to interferon treatment in Chinese patients. J Hum Genet 2016;61:301-5.
 - the study on HLA-A*03, HLA-B*27, HLA-DRB1*0101, HLA-DRB1*0401, HLA-DRB1*15, and DQB1*0201 McKiernan SM et al. Distinct MHC class I and II alleles are associated with hepatitis C viral clearance, originating from a single source. Hepatology 2004;40:108-14.
 - the study on HLA-C*15 Tseng KC et al. Effect of human leukocyte antigen class I and II alleles on hepatitis C viral load among chronic hepatitis C patients in Southern Taiwan. Hum Immunol 2013;74:978-82.
 - the study on HLA-C1 (and KIR2DL3) Khakoo SI et al. HLA and NK cell inhibitory receptor genes in resolving hepatitis C virus infection. Science 2004;305:872-4.
 - the study on HLA-C1 (and KIR2DL3) Knapp S et al. Consistent beneficial effects of killer cell immunoglobulin-like receptor 2DL3 and group 1 human leukocyte antigen-C following exposure to hepatitis C virus. Hepatology 2010;51:1168-75.

Date of literature search: 2 January 2023.

	Genotype	Code	Gene-drug interaction	Action	Date
KNMP Pharmacogenetics	B44-negative	4 D	no	no	7 February 2023
Working Group decision					

Mechanism:

The mechanism of the effect of HLA on the efficacy of interferon alfa/ribavirin treatment is not known. An effect on the immune response against hepatocytes infected with the hepatitis virus is likely to play a role.