

CYP2D6: quinidine

2533/2534/2535

AUC = area under the time-concentration curve, Cl_{or} = oral clearance, IM = intermediate metaboliser (gene dose 0.25-1) (reduced CYP2D6 enzyme activity), NM = normal metaboliser (gene dose 1.5-2.5) (normal CYP2D6 enzyme activity), NS = non-significant, PM = poor metaboliser (gene dose 0) (absent CYP2D6 enzyme activity), S = significant, $t_{1/2}$ = half-life, UM = ultra-rapid metaboliser (gene dose \geq 2.75) (elevated CYP2D6 enzyme activity)

Source	Code	Effect	Comments
ref. 1 Nielsen F et al. Lack of relationship between quinidine pharmacokinetics and the sparteine oxidation polymorphism. Eur J Clin Pharmacol 1995;48:501-4.	3 PM: AA	 16 volunteers, 8x PM and 8x NM[#] (phenotyped using sparteine), single dose of 200 mg oral quinidine, no co-medication reported. PM versus NM[#]: No significant decrease in Clor and t_{1/2} (NS, by 13% and 1% respectively). No significant decrease in clearance via metabolite formation (NS, by 11%). No significant decrease in clearance via 3-hydroxyquinidine or via quinidine-N-oxide (NS, by 29% and 24% respectively). Note: genotype not known. 	Authors' conclusion: 'CYP2D6 is not an important enzyme for the oxidation of quinidine.'
ref. 2 Brøsen K et al. Quinidine kinetics after a single oral dose in relation to the sparteine oxidation polymorphism in man. Br J Clin Pharmacol 1990;29:248-53.	3 PM: AA	8 volunteers, 4x PM and 4x NM [#] (phenotyped using sparteine), single dose of 400 mg oral quinidine sulphate, no co-medication. PM versus NM [#] :	Authors' conclusion: 'The panel study ruled out a major involvement of P450dbl in the metabolism of quinidine. However, the 20% lower formation clearance of 3-OH- quinidine found in PM compared with NM at a significance level of 5% suggests that a fraction of the quinidine dose might be metabolised by P450dbl.'
ref. 3 Mikus G et al. Pharmacokinetics and metabolism of quinidine in extensive and poor metabolisers of sparteine. Eur J Clin Pharmacol 1986;31:69-72.	3 PM: AA	 6 volunteers, 3x PM and 3x NM[#] (phenotyped using sparteine), single dose of 3 mg/kg intravenous quinidine sulphate, no co-medication, smoking not excluded. PM versus NM[#]: No significant decrease in AUC (NS, by 5%). No significant increase in CI and t_{1/2} (NS, by 11% and 7% respectively). Note: genotype not known. 	Authors' conclusion: 'It is unlikely that quinidine metabolism is controlled by the sparteine/debrisoquine gene locus.'

NM[#]: It is not possible to distinguish NM, IM and UM by phenotyping. NM[#] is therefore equal to NM + IM + UM.

Risk group

--

Comments:

Date of literature search: 11 July 2022.

	Phenotype	Code	Gene-drug interaction	Action	Date
KNMP Pharmacogenetics	PM	3 AA	no	no	12 September 2022
Working Group decision	IM		no	no	
	UM		no	no	

Mechanism:

Quinidine is primarily metabolised by CYP3A4. Quinidine is a strong inhibitor of CYP2D6, but is hardly if at all metabolised by CYP2D6.