

CYP2D6: sertraline

3512 to 3514

AUC = area under the concentration-time curve, EM = extensive metaboliser (gene dose 1.5-2.5) (normal CYP2D6 enzyme activity), IM = intermediate metaboliser (gene dose 0.5-1) (reduced CYP2D6 enzyme activity), NS = non-significant, PM = poor metaboliser (gene dose 0) (absent CYP2D6 enzyme activity), $t_{1/2}$ = half-life, S = significant, UM = ultra-rapid metaboliser (gene dose \geq 3) (increased CYP2D6 enzyme activity).

Disclaimer: The Pharmacogenetics Working Group of the KNMP formulates the optimal recommendations for each phenotype group based on the available evidence. If this optimal recommendation cannot be followed due to practical restrictions, e.g. therapeutic drug monitoring or a lower dose is not available, the health care professional should consider the next best option.

Brief summary and justification of choices:

Sertraline is mainly converted by CYP2C19 to the active metabolite desmethylsertraline. Although desmethylsertraline has antidepressant activity, the activity is low and not clinically relevant at the standard sertraline dose. There is no evidence to support a CYP2D6-sertraline interaction (no/no-interactions).

Four studies did not find a difference in the pharmacokinetics, efficacy and/or side effects of sertraline for patients with a genetically altered CYP2D6 enzyme activity (poor metabolisers (PM), intermediate metabolisers (IM) and/or ultra-rapid metabolisers (UM)) compared to patients with a normal CYP2D6 enzyme activity (extensive metabolisers (EM)).

You can find a detailed overview of the observed kinetic and clinical consequences per phenotype in the background information text of the gene-drug interactions on the KNMP Kennisbank. You might also have access to this background information text via your pharmacy or physician electronic decision support system.

Source	Code	Effect			Comments
ref. 1 Saiz-Rodríguez M et al. Effect of polymor- phisms on the pharma- cokinetics, pharmaco- dynamics and safety of sertraline in healthy volunteers. Basic Clin Pharmacol Toxicol 2018;122:501-511. PubMed PMID: 29136336.	З РМ: ΔΔ	45 healthy volunteers line 100 mg on two se Adverse drug reaction that were definitely, pr sertraline. No severe adverse ev- teers experienced at le The most frequent wer miting (34.8%) and he Co-medication and sm Genotyping: - 28x EM - 13x IM - 3x PM - 1x UM Results: Results for PM versu	received a single dose parate occasions. s were defined as adverse obably or possibly cau ents occurred. 73.9% of east one adverse drug re insomnia (43.5%), n adache (30.4%). noking were excluded.	of sertra- erse events sed by of the volun- reaction. ausea/vo- s UM: value for EM 82.8%	Authors' conclusion: "No significant effect was found for poly- morphisms in CYP- 2C9, CYP2D6 and ABCB1 on sertraline pharmacokinetics."
				02.070	

The table below uses the KNMP nomenclature for EM, PM, IM and UM. As a result, the definitions of EM, PM, IM and UM in the table below can differ from the definitions used by the authors in the article.

ref. 1, continuation	IM: AA	at least 1 adverse			
,	UM: AA	drug reaction			
		AUC sertraline	NS	866.0	
				ng/hr.ml	
		NOTE: Genotyping v cation. These are th this Spanish populat NOTE 2: The author the CYP2D6 phenot refer to an article de consequence, a gue definitions			
ref. 2	3	In a double blind clir	ical trial, 25 children wit	h fragile X	Authors' conclusion:
rer. 2 AlOlaby RR et al. Molecular biomarkers predictive of sertraline treatment response in young children with fragile X syndrome. Brain Dev 2017;39:483-492. PubMed PMID: 28242040.	IM+PM:	In a double blind clir syndrome, 2 to 6 yes compared to 26 child was administered in for patients aged 2 co patients aged 4 year duration of the clinic Fragile X syndrome development resultin tive, and emotional p synthesis in young of togenesis and postn ved to play a role in Primary outcome me Early Learning (MSE and expressive lang cal Global Impressic CGI-I is a 7-point sc improved since the i much worse since th Associations with C ^N by regression analys type by treatment in score for severity for syndrome caused by gender. Relevant co-medica most but not all child logical intervention. Genotyping: sertraline group - 17x EM - 8x IM+PM (2x IM PM) Results: Efficacy results for CGI-I NS Sensory A se Processing ser Measure – wa Preschool EM Home Form Lin - social par- ticination raw to	Incall trial, 25 children with ars of age, receiving ser dren receiving placebo. liquid form in a dose of or 3 years and 5.0 mg/date s to 5 years and 8 month all trial was 6 months. is characterised by an atom and in significant behavior problems. Deficits in service hildren resulting in impact atal brain development, disease development. easures were the Muller EL) expressive language uage standard score, ar on Scale-Improvement (0 ale varying from 1 = very nitiation of treatment to reinitiation of treatment to reinitiation of treatment to reinitiation of treatment to reinitiation of treatment to regressive language y full mutation versus mode tion was not excluded. In Iren also received a non placebo group - 21x EM 6x - 5x IM+PM (4 PM) IM+PM versus EM: ignificant difference bet traine and placebo, whis s not a significant differen	n tragile X traline were Sertraline 2.5 mg/day ay for ths. The litered brain ural, cogni- otonin tired synap- are belie- a Scales of e raw score to the Clini- CGI-I). The y much 7 = very hvestigated hent, geno- e (baseline bry (fragile X bosaic), and h addition, -pharmaco- x IM, 1x ween lie there ence for a trend for b pheno- herion raw	Authors conclusion: "Polymorphisms in the MAOA, Cyto- chrome P450 2C19 and 2D6, and in the 5-HTTLPR gene showed a significant correlation with some of the secondary measures included in this study. This study shows that polymor- phisms of genes involved in the sero- tonergic pathway could play a potential role in predicting response to sertra- line treatment in young children with fragile X syndrome."
	IM+PM: AA	Preschool EN Home Form Lin – social par- ass ticipation raw typ	e regression showed sociation of the CYP2D6 e with the social particip	a trend for b pheno- pation raw	

1		1
	No association with the CYP2D6 phenotype was found for the following response para-meters: - MSEL expressive language raw score - MSEL composite score - MSEL receptive language raw score - MSEL receptive language raw score - MSEL visual reception raw score - MSEL fine motor raw score - MSEL fine motor raw score - MSEL visual reception age equivalent score - MSEL fine motor age equivalent score - MSEL cognitive T score (cognitive standard score) NOTE 1: Genotyping was for *2-*11, *15, *17, *29, *35 and *41. Apart from gene multiplication, these are the most important gene variants in this population from the USA.	
	consequence, a guess had to be made regarding these	
3	definitions. 64 patients with obsessive-compulsive disorder (OCD) were treated with sertraline at a dose of 100 mg/day or higher for more than 10 weeks. Response and side effects were assessed by patient interviews some time after treatment discontinuation. Response was measu- red using an OCD-adjusted Clinical Global Impression Scale-Improvement (CGI-I). Patients who showed a minimal improvement on this scale were included in the group of the non-responders. Patients with mild side effects were included in the group without significant side effects. Relevant co-medication was not excluded. Genotyping (calculated on the basis of the percentage distribution): - 55x EM+gene dose 1/0 (36x EM, 19x gene dose 1/0) - 5x IM (2-3x gene dose 0.5/0, 2-3x gene dose 0.5/0.5) - 1x PM - 3x UM	Authors' conclusion: "There was no signi- ficant effect of CYP- 2D6 metabolizer status on treatment response to any of the drugs studied There was no signi- ficant association of CYP2D6 and CYP- 2C19 metabolizer status with side effects to any of the drugs included in the study."
PM: AA IM: AA UM: AA	Results: Results for PM versus IM versus (EM+gene dose 1/0) versus UM: response NS There was also no association for: - (PM+IM+UM) versus (EM+gene dose 1/0) (NS) - (gene dose ≥ 3.0) versus (gene dose 2.5) versus (gene dose 2) versus (gene dose 1.5) versus (gene dose 1) versus (gene dose 0.5) versus (gene dose 0) (NS) side effects NS effects There was also no association for (PM+IM+UM) versus (EM+gene dose 1/0) (NS). NOTE: Genotyping was for *3-*5, *10, *17, *41 and gene multiplication. These are the most important gene vari-	
	3 PM: AA IM: AA UM: AA	found for the following response para-meters: - MSEL expressive language raw score - MSEL incorposite score - MSEL treceptive language raw score - MSEL fine motor raw score - MSEL fine motor age equivalent score - MSEL fine motor age equivalent score - MSEL fine motor age equivalent score - MSEL cognitive T score (cognitive standard score) NOTE 1: Genotyping was for *2-*11, *15, *17, *29, *35 and *41. Apart from gene multiplication, these are the most important gene variants in this population from the USA. NOTE 2: The authors do not provide the definitions of the CYP2D6 phenotypes mentioned in the article. As a consequence, a guess had to be made regarding these definitions. 3 64 patients with obsessive-compulsive disorder (OCD) were treated with sertraline at a dose of 100 mg/day or higher for more than 10 weeks. Response and side effects were assessed by patient interviews some time after treatment discontinuation. Response was measu- red using an OCD-adjusted Clinical Global Impression Scale-Improvement (CGI-I). Patients who showed a minimal improvement on this scale were included in the group of the non-responders. Patients with mild side effects. Relevant co-medication was not excluded. Genotyping (calculated on the basis of the percentage distribution): - 55x EM+gene dose 1/0 (36x EM, 19x gene dose 1/0) - 5x IM (2-3x gene dose 0.5/0, 2-3x gene dose 0.5/0.5) - 1 x PM - 3x UM Results: There was also no association for: - (PM+IM+UM) versus (EM+gene dose 1/0) (vs).

ref. 4	3	20 healthy volunteers (phenotyped, 10x EM [#] , 10x PM)	Authors' conclusion:
Hamelin BA et al.		received a single dose of 50 mg sertraline. Co-medica-	"We observed no
The disposition of		tion was excluded.	effect of CYP2D6
fluoxetine but not			activity in vivo on
sertraline is altered in		PM versus EM [#] :	sertraline or desme-
poor metabolizers of	PM: AA	- no difference in AUC and t _{1/2} of sertraline	thylsertraline phar-
debrisoquin.			macokinetics."
Clin Pharmacol Ther		NOTE: genotype unknown	
1996;60:512-21.			

[#]: Phenotyping did not distinguish between IM, EM and UM. EM[#] is therefore equal to IM+EM+UM.

Risk group	-

Comments:

Date of literature search: 12 April 2018.

	Phenotype	Code	Gene-drug interaction	Action	Date
Dutch Pharmacogenetic	PM	3 AA	No	No	14 May 2018
Working Group decision	IM	3 AA	No	No	
	UM	3 AA	No	No	

Mechanism:

Sertraline is mainly converted by CYP2C19 to the active metabolite desmethylsertraline. Although desmethylsertraline has antidepressant activity, the activity is low and not clinically relevant at the standard sertraline dose. For this reason, most Dutch hospitals use only the sertraline concentration for therapeutic drug monitoring (therapeutic range: 50-300 μ g/L) (http://tdm-monografie.org/monografie/ssri-selectieve-serotonine-heropnameremmers). However, some hospitals use the sum of the sertraline and desmethylsertraline concentrations for therapeutic drug monitoring (therapeutic drug monitoring description)).