

CYP2D6: eliglustat

6137/6138/6139

AUC = 'area under the time-concentration curve', CTCAE = common terminology criteria for adverse events, ECG = electrocardiogram, IM = intermediate metaboliser (gene dose 0.25-1) (decreased CYP2D6 enzyme activity), NM = normal metaboliser (gene dose 1.25-2.5) (normal CYP2D6 enzyme activity), PBPK = physiologically based pharma-cokinetic, PKPD = pharmacokinetic-pharmacodynamic, PM = poor metaboliser (gene dose 0) (absent CYP2D6 enzyme activity), SmPC = Summary of Product Characteristics, $t_{1/2}$ = elimination half-live, UM = ultra-rapid metaboliser (gene dose ≥ 2.75) (increased CYP2D6 enzyme activity)

Disclaimer: The Pharmacogenetics Working Group of the KNMP formulates the optimal recommendations for each phenotype group based on the available evidence. If this optimal recommendation cannot be followed due to practical restrictions, e.g. therapeutic drug monitoring or a lower dose is not available, the health care professional should consider the next best option.

Brief summary and justification of choices:

Eliglustat is predominantly metabolised into inactive metabolites by CYP2D6 and to a lesser extent by CYP3A. Eliglustat is an inhibitor of CYP2D6 and P-gp. Thus, eliglustat inhibits its own metabolism by inhibiting CYP2D6. This results in a nonlinear dose-concentration relationship.

Because eliglustat is predominantly metabolised by CYP2D6, genetic variants that decrease the CYP2D6 activity (poor and intermediate metaboliser (PM and IM)) increase the systemic exposure to eliglustat at a given dose. Similarly, genetic variants that increase the CYP2D6 activity (ultra-rapid metaboliser, UM) decrease the systemic exposure to eliglustat at a given dose.

- PM The systemic exposure following 84 mg twice daily at steady state is 7- to 9-fold higher in PM. Because a PK/PD model predicts small increases in the PR-, QRS- and QTcF-interval at eliglustat plasma concentrations 11-fold the expected C_{max} in humans, a dose reduction for PM from 84 mg twice daily to 84 mg once daily is included in the label of eliglustat. The KNMP: Pharmacogenetics Working Group concluded that there is a gene-drug interaction and therapy adjustment is required (yes/yes-interaction). The therapeutic recommendations are based on the European and American SmPCs.
- IM For one IM, the AUC was 2- to 4-fold higher than the AUCs of the NM with the highest and lowest AUC respectively. This difference is too small for recommendation of a dose reduction. However, for IM, eliglustat is also not recommended in case of mild hepatic impairment and/or in case of mild, moderate or severe renal impairment. The KNMP Pharmacogenetics Working Group concluded that there is a gene-drug interaction and that a warning is required in case of mild hepatic impairment and/or mild, moderate or severe renal impairment (yes/yes-interaction). The therapeutic recommendations are based on the European and American SmPCs.
- UM Four UM, for which the dose was titrated up to eliglustat 127 mg twice daily, had an adequate clinical response on eliglustat. For the only UM receiving eliglustat 84 mg twice daily, the clinical response was not adequate. Because of the small number of UM in which a daily dose of 254 mg has been proven to be effective, the KNMP Pharmacogenetics Working Group decided to follow the SmPC recommendation of an alternative for UM (yes/yes-interaction). The reason is that part of the UM have more than 3 active CYP2D6 alleles and a correspondingly higher CYP2D6 activity. Moreover, also comedication with inducers of CYP3A can result in an additional increase in eliglustat clearance.

You can find an overview of the clinical and kinetic effects per phenotype in the background information text of the gene-drug interactions in the KNMP Kennisbank. You might also have access to this background information text via your pharmacy or physician electronic decision support system.

Recommendation concerning pre-emptive genotyping, including justification of choices:

Due to the absence of publications of new clinical studies or case reports with patients with a CYP2D6 genotype leading to reduced or increased CYP2D6 activity in medical journals, and thus the absence of evidence of an increase in adverse events code \geq D (grade \geq 3) in these patients, the clinical implication of the gene-drug interaction scores only 2 out of the maximum of 10 points (with pre-emptive genotyping considered to be potentially beneficial for scores ranging from 0 to 2 points) (see also the Clinical Implication Score tables at the end of this risk analysis). However, there is not enough evidence to reject the warnings and recommendations in the SmPC. In addition, the Clinical Implication Score is mainly (for 80%) based on studies published in medical journals and therefore not suited to determine the clinical implication for gene-drug interactions for which data are only provided by pre-registration

studies. For these reasons, the KNMP Pharmacogenetics Working Group decided to ignore the Clinical Implication Score and adopt the genotyping recommendation in the SmPC. The SmPC indicates that genotyping must be performed before starting eliglustat to guide drug and dose selection. This would amount to genotyping being essential for drug safety according to the nomenclature of the KNMP Pharmacogenetics Working Group.

Source	Code	Effect	Comments
ref. 1	3	Predictions from pharmacokinetic/pharmacodynamic-ECG model-	
Ruskin JN et al.		ling based on the thorough ECG study in 47 healthy adult volun-	
How a concen-		teers indicated below, together with other exposure-related factors,	
tration-effect		contributed to the CYP2D6 phenotype-based dosing recommenda-	
analysis of data		tions for eliglustat, including dose adjustments and contraindica-	
from the eliglu-		tions when co-administered with drugs metabolized by the CYP-	
stat thorough		2D6 and CYP3A pathways.	
electrocardio-		The ECG study was a double-blind cross-over study in which 42	
graphic study		healthy volunteers received 4 different single doses in randomised	
was used to		order: placebo, 169 mg eliglustat (therapeutic dose), 675 mg	
support dosing		eliglustat (supratherapeutic dose), and 400 mg moxifloxacin (posi-	
recommenda-		tive control (a dose shown to prolong QT/QTc interval by 8 to 13	
tions.		ms)). The other 5 volunteers completed only part of the study.	
Mol Genet		Drugs of abuse; alcohol, caffeine-containing products; grapefruit	
Metab		and grapefruit juice; and medications and/or dietary supplements	
2020;131:211-8.		known to prolong QT/QTc interval or inhibit or induce CYP2D6	
PMID:		were excluded. Triplicate ECGs were determined at 3 timepoints	
33012655.		before dosing and 18 timepoints in the period of 0.5-22.5 hour after	
		dosing. Plasma concentrations were determined before and up to	
		36 hours after dosing.	
		For QTcF (QT interval corrected with Fridericia's correction formu-	
		la), a linear mixed-effect model was used and included period,	
		sequence, treatment, sex, and time as fixed effects; baseline QTcF	
		(the averaged value of all three ECGs performed before dosing) as	
		a covariate; and time-by-treatment and sex-by-treatment interac-	
		tions, and with subject nested within sequence as a random effect.	
		If the upper bound of the one-sided 95% CI for the increase in	
		QTcF (QT-interval corrected with Fridericia's correction formula)	
		from baseline for eliglustat minus the increase in QTcF from base-	
		line for placebo fell below 10 ms, it was concluded that the expo-	
		sure associated with this dose of eliglustat did not prolong the QTc	
		interval to a clinically significant degree.	
		The relationship between placebo-corrected change from baseline	
		in QTc interval (i.e., QTcF), heart rate, PR and QRS intervals (cal-	
		culated for each subject and at each time point), and plasma eliglu-	
		stat concentrations was explored using a linear mixed-effect model	
		with plasma concentration as a fixed effect and subject as a	
		random effect. If the P value of the population slope was < 0.05, a	
		linear relationship was declared and the predicted mean increases	
		from baseline (along with two-sided 95% CI) were calculated using	
		the geometric means of observed C _{max} for the two doses of eliglu-	
		stat tested in the study, as well as the geometric means of physio- logically-based pharmacokinetic model-predicted C _{max} in different	
		drug-drug interaction scenarios (i.e., eliglustat with strong CYP2D6	
		and/or strong CYP3A inhibitors). Assuming a within-subject standard deviation of 9 ms, a total of 36	
		subjects (9 subjects per treatment sequence) were calculated to be	
		required to detect an 8-ms difference in QTc between placebo and	
		active treatment with a power of 95% and one-sided type 1 error of	
		2.5%.	
		2.070.	
		Genotyping:	
		- 45x NM+IM	
		- 2x PM	
		Results:	
	1	- No volunteer had QTcF ≥480 ms, QTcF change from baseline >	
	IM: AA	$60 \text{ ms}, \text{QRS}$ interval $\geq 120 \text{ ms}, \text{ or met the PR outlier criterion (PR)}$	
	PM: AA	> 200 ms and increase from baseline \geq 25%).	
L		······································	I

ref 1 continue		en overte	covoro odvo	rea avanta ar	deaths			
ref. 1, continua- tion	 No serious adver occurred during t 							
	an adverse even							
	- Treatment-emergent adverse events considered possibly or							
	probably related							
	subjects included	d dizzines	s (5 subjects),	, nausea (3 su	bjects),			
	headache (2 sub	jects), blu	rred vision (2	subjects), and	abdominal			
	pain/abdominal p							
	ment-emergent a							
	study end. The n							
	emergent advers							
	events, 8 subject jects (16.7%)]) a							
	subjects (9.1%))							
	moderate advers							
	vagal syncope) v							
	cases were attrib	outed temp	oorally to phle	botomy.				
	Modelling results:				(0.55)			
	Drug-drug	PBPK		predicted me				
	interaction	model-		interval) (ms)	•			
	scenarios depending on	predic- ted	QTcF	mpared to place	QRS			
	CYP2D6	mean	interval	interval	interval			
	phenotype	eliglu-						
		stat						
		C _{max}						
		(ng/						
		mL)						
	Normal metaboli		1	145				
	Eliglustat	21.5	0.3	1.5	0.3			
	alone With paroxe-	126	(-1.1;1.6) 2.9	(0.3;2.7) 5.3	(-0.4;1.0) 1.6			
	tine (strong	120	(1.6;4.3)	(4.1;6.5)	(0.9;2.3)			
	CYP2D6		(1.0,4.0)	(4.1,0.0)	(0.0,2.0)			
	inhibitor)							
	With ketocona-	48.4	1.0	2.5	0.7			
	zole (strong		(-0.4;2.3)	(1.3;3.7)	(-0.0;1.4)			
	CYP3A							
	inhibitor)							
	With paroxe-	405	10.0	15.3	5.0			
	tine (strong		(8.3;11.6))	(13.9;16.8)	(4.3;5.8)			
	CYP2D6 inhi- bitor) + ketoco-							
	nazole (strong							
	CYP3A inhibit-							
	or)							
	Intermediate me	taboliser (84 mg twice o	daily)	·			
	Eliglustat	54.4	1.1	2.7	0.7			
	alone		(-0.2;2.5)	(1.5;3.9)	(0.0;1.4)			
	With paroxe-	135	3.2	5.6	1.7			
	tine (strong		(1.8;4.5)	(4.4;6.8)	(1.0;2.4)			
	CYP2D6							
	inhibitor)	047	5.0		0.7			
	With ketocona-	217	5.2	8.6	2.7			
	zole (strong		(3.8;6.6)	(7.3;9.8)	(2.0;3.5)			
	CYP3A							
	inhibitor) With paroxe-	464	11.4	17.5	5.8			
	tine (strong	404	(9.7;13.2)	(15.9;19.0)	5.8 (5.0;6.6)			
	CYP2D6 inhi-		(3.7,13.2)	(13.3,13.0)	(0.0,0.0)			
	bitor) + ketoco-							
			1	1				
	nazole (strong CYP3A inhibit-							
	nazole (strong							

				1	1	1	Π			
ref. 1, continua-		Eliglustat	67.8	<u>1.5</u>	<u>3.2</u>	<u>0.9</u>				
tion		alone		<u>(0.1;2.8)</u>	<u>(2.0;4.4)</u>	<u>(0.2;1.6)</u>	H			
		With ketocona-	284	<u>6.9</u>	<u>11.0</u>	<u>3.6</u>				
		zole (strong		<u>(5.4;8.4)</u>	<u>(9.7;12.3)</u>	<u>(2.8;4.3)</u>				
		CYP3A								
		inhibitor)								
		Note: The most	conservat	ive threshold	established by	y regulatory				
		authorities for e								
		concerns was a				,				
ref. 2	0	Indication:								
SmPC Cerdelga	Ŭ	Cerdelga is indica	ted for the	lona-term tre	eatment of adu	ult patients				
(eliglustat) 28-		with Gaucher dise								
08-23.		bolisers (PMs), inf								
00 20.		bolisers (NMs).	ennediate	motabolicon		nai mota				
		Dose:								
		The recommende	k ai aanh h	R4 ma elialus	tat twice daily	in CYP2D6				
		intermediate meta								
		The recommende								
		poor metabolisers		54 mg eligius	lat once daily i					
		Special population		liaara (UDMa) and indatorm	vinata				
		CYP2D6 ultra-rap	iu metabo	iisers (URIVIS) and muelern	male				
		metabolisers		d in nationta :						
		Eliglustat should r								
		rapid metabolisers	· · · ·		ate metabolise	ers.				
		Patients with hepa								
		In CYP2D6 norma								
		class C) hepatic ir								
		In CYP2D6 norma								
		impairment (Child								
		In CYP2D6 norma								
		ment (Child-Pugh				quired and				
		the recommended								
		In CYP2D6 interm								
		(PMs) with any de	gree of he	epatic impairn	nent, eliglustat	is not				
		recommended.								
		Patients with rena								
		In CYP2D6 norma								
		severe renal impa				ired and the				
		recommended do								
		In CYP2D6 NMs v		age renal dis	ease (ESRD),	eliglustat is				
		not recommended								
		In CYP2D6 intermediate metabolisers (IMs) or poor metabolisers								
		(PMs) with mild, moderate or severe renal impairment or ESRD,								
		eliglustat is not re								
		Contraindications:								
		Patients who are								
		normal metabolise								
			inhibitor concomitantly with a strong or moderate CYP3A inhibitor							
		and patients who								
		strong CYP3A inh								
		results in substant								
		Warning:								
		Initiation of therap								
		Before initiation of								
		genotyped for CY	P2D6 to d	etermine the	CYP2D6 meta	aboliser				
		status.								
		Drug-drug interac								
		Cerdelga is contra								
		diate metabolisers								
		strong or moderat								
		or moderate CYP3								
		poor metabolisers								
		For use of eliglust			oderate CYP2	D6 or				
		CYP3A inhibitor, s								
		Patients with hepa	atic impairi	ment						
		Limited data are a			rmal metabolis	sers (NMs)				
	•			-		· /				

	1		
ref. 2, continua-		with moderate hepatic impairment. Use of eliglustat in these	
tion		patients is not recommended.	
		Limited or no data are available in CYP2D6 intermediate metabo-	
	IM: AA	lisers (IMs) or poor metabolisers (PMs) with any degree of hepatic	
		impairment. Use of eliglustat in these patients is not recommen-	
		ded.	
		Patients with renal impairment Limited or no data are available in CYP2D6 normal metabolisers	
		(NMs), intermediate metabolisers (IMs) or poor metabolisers (PMs)	
		with ESRD and in CYP2D6 intermediate metabolisers (IMs) or poor	
		metabolisers (PMs) with mild, moderate, or severe renal impair-	
		ment; use of eliglustat in these patients is not recommended.	
		Interactions:	
		The list of substances in this section is not an inclusive list and the	
		prescriber is advised to consult the SmPC of all other prescribed	
		medicinal products for potential drug-drug interactions with eliglu-	
		stat.	
		Drugs that may increase eliglustat exposure	
		Cerdelga is contraindicated in patients who are CYP2D6 interme-	
		diate metabolisers (IMs) or normal metabolisers (NMs) taking a	
		strong or moderate CYP2D6 inhibitor concomitantly with a strong	
		or moderate CYP3A inhibitor, and in patients who are CYP2D6	
		poor metabolisers (PMs) taking a strong CYP3A inhibitor. Use of Cerdelga under these conditions results in substantially elevated	
		eliglustat plasma concentrations.	
		CYP2D6 inhibitors	
		In intermediate (IMs) and normal metabolisers (NMs):	
		After repeated 84 mg twice daily doses of eliglustat in non-PMs,	
		concomitant administration with repeated 30 mg once daily of	
		paroxetine, a strong inhibitor of CYP2D6, resulted in a 7.3- and	
		8.9-fold increase in eliglustat C_{max} and AUC_{0-12h} , respectively. A	
		dose of eliglustat 84 mg once daily should be considered when a	
		strong CYP2D6 inhibitor (e.g. paroxetine, fluoxetine, quinidine,	
		bupropion).is used concomitantly in IMs and NMs.	
		At 84 mg twice daily dosing with eliglustat in non-PMs, it is predic- ted that concomitant use of moderate CYP2D6 inhibitors (e.g. dulo-	
		xetine, terbinafine, moclobemide, mirabegron, cinacalcet, droneda-	
		rone) would increase eliglustat exposure approximately up to 4-	
		fold. Caution should be used with moderate CYP2D6 inhibitors in	
		IMs and NMs.	
		CYP3A inhibitors	
		In intermediate (IMs) and normal metabolisers (NMs):	
		After repeated 84 mg twice daily doses of eliglustat in non-PMs,	
		concomitant administration with repeated 400 mg once daily doses	
		of ketoconazole, a strong inhibitor of CYP3A, resulted in a 3.8-fold	
		and 4.3-fold increase in eliglustat C _{max} and AUC _{0-12h} , respectively;	
		similar effects would be expected for other strong inhibitors of CYP3A (e.g. clarithromycin, ketoconazole, itraconazole, cobicistat,	
		indinavir, lopinavir, ritonavir, saquinavir, telaprevir, tipranavir, posa-	
		conazole, voriconazole, telithromycin, conivaptan, boceprevir).	
		Caution should be used with strong CYP3A inhibitor in IMs and	
		NMs.	
		At 84 mg once daily dosing with eliglustat in non-PMs, it is predic-	
		ted that concomitant use of moderate CYP3A inhibitors (e.g.	
		erythromycin, ciprofloxacin, fluconazole, diltiazem, verapamil, apre-	
		pitant, atazanavir, darunavir, fosamprenavir, imatinib, cimetidine)	
		would increase the eligilustat exposure approximately up to 3-fold.	
		Caution should be used with moderate CYP3A inhibitors in IMs	
		and NMs. In poor metabolisers (PMs):	
		At 84 mg once daily dosing with eliglustat in PMs, it is predicted	
		that concomitant use of strong CYP3A inhibitors (e.g. ketocona-	
		zole, clarithromycin, itraconazole, cobicistat, indinavir, lopinavir,	
		ritonavir, saquinavir, telaprevir, tipranavir, posaconazole, voricona-	
		zole, telithromycin, conivaptan, boceprevir) would increase the	
		C _{max} and AUC ₀₋₂₄ of eliglustat 4.3-fold and 6.2-fold. The use of	
		-	

	1		1
ref. 2, continua-		strong CYP3A inhibitors is contraindicated in PMs.	
tion		At 84 mg once daily dosing with eliglustat in PMs, it is predicted that concomitant use of moderate CYP3A inhibitors (e.g. erythro-	
		mycin, ciprofloxacin, fluconazole, diltiazem, verapamil, aprepitant,	
		atazanavir, darunavir, fosamprenavir, imatinib, cimetidine) would	
		increase the C _{max} and AUC ₀₋₂₄ of eliglustat 2.4- and 3.0-fold,	
		respectively. Use of a moderate CYP3A inhibitor with eliglustat is	
		not recommended in PMs.	
		Caution should be used with weak CYP3A inhibitors (e.g. amlopi- dine, cilostazol, fluvoxamine, goldenseal, isoniazid, ranitidine,	
		ranolazine) in PMs.	
		CYP2D6 inhibitors used simultaneously with CYP3A inhibitors	
		In intermediate (IMs) and normal metabolisers (NMs):	
		At 84 mg twice daily dosing with eliglustat in non-PMs, it is	
		predicted that the concomitant use of strong or moderate CYP2D6	
		inhibitors and strong or moderate CYP3A inhibitors would increase C_{max} and AUC ₀₋₁₂ up to 17- and 25-fold, respectively. The use of a	
		strong or moderate CYP2D6 inhibitor concomitantly with a strong	
		or moderate CYP3A inhibitor is contraindicated in IMs and NMs.	
		Agents that may decrease eliglustat exposure	
		Strong CYP3A inducers	
		After repeated 127 mg twice daily doses of eliglustat in non-PMs,	
		concomitant administration of repeated 600 mg once daily doses of rifampicin (a strong inducer of CYP3A as well as the efflux trans-	
		porter P-gp) resulted in an approximately 85% in eliglustat expo-	
		sure. After repeated 84 mg twice daily doses of eliglustat in PMs,	
		concomitant administration of repeated 600 mg once daily doses of	
		rifampicin resulted in an approximately 95% decrease in eligustat	
		exposure. Use of a strong CYP3A4 inducer (e.g. rifampin, carba-	
		mazepine, phenobarbital, phenytoin, rifabutin and St. John's Wort) with eliglustat is not recommended in IMs, NMs and PMs.	
		Pharmacodynamics:	
		Clinical efficacy and safety	
		The recommended dosing regimens are based on modelling, either	
		using the PK/PD data from the dose-titration regimens applied in	
		the clinical studies for IMs and NMs, or using the physiologically- based PK data for PMs.	
		Clinical experience in CYP2D6 poor metabolisers (PMs) and ultra-	
		rapid metabolisers (URMs)	
		There is limited experience with Cerdelga treatment of patients	
		who are PMs or URMs. In the primary analysis period of the three	
		clinical studies, a total of 5 PMs and 5 URMs were treated with Cerdelga. All PMs received eliglustat 42 mg twice daily, and four of	
		these (80%) had an adequate clinical response. The majority of	
		URMs (80%) received a dose escalation to 127 mg eliglustat twice	
		daily, all of which had adequate clinical responses. The one URM	
	UM: A	who received 84 mg twice daily did not have an adequate clinical	
		response.	
		The predicted exposures with 84 mg eliglustat once daily in patients who are PMs are expected to be similar to exposures	
		observed with 84 mg eliglustat twice daily in CYP2D6 intermediate	
		metabolisers (IMs).	
		Patients who are URMs may not achieve adequate concentrations	
		to achieve a therapeutic effect. No dosing recommendation for	
		URMs can be given. Pharmacokinetics:	
		Following repeated dosing of eliglustat 84 mg twice daily in non-	
		PMs and once daily in PMs, steady state was reached by 4 days,	
		with an accumulation ratio of 3-fold or less.	
		After repeated oral doses of 84 mg eliglustat twice daily, eliglustat	
	PM: A	elimination half-life is approximately 4-7 hours in non-PMs and 9 hours in PMs.	
		Characteristics in specific groups	
		CYP2D6 phenotype	
		Population pharmacokinetic analysis shows that the CYP2D6	
		predicted phenotype based on genotype is the most important	

not 0 continue		for story offersting with surger a solving stick.	eriekilite, hedisiskaale with a OVD	[
ref. 2, continua-		factor affecting pharmacokinetic v				
tion		2D6 poor metaboliser predicted pl				
		of the population) exhibit higher el				
		mediate or normal CYP2D6 metal Hepatic impairment:				
		Effects of mild and moderate hepa	atic impairment were evaluated in			
		a single dose phase 1 study. After				
		C _{max} and AUC were 1.2- and 1.2-f				
		metabolisers (NMs) with mild hepa				
		fold higher in CYP2D6 normal me				
		hepatic impairment compared to h				
		lisers (NMs).	, , , , , , , , , , , , , , , , , , ,			
		After repeated 84 mg twice daily o	loses of Cerdelga, C _{max} and			
		AUC0-12 are predicted to be 2.4- a				
		normal metabolisers (NMs) with m	nild hepatic impairment and 6.4-			
		and 8.9-fold higher in CYP2D6 no				
		moderate hepatic impairment com	pared to healthy CYP2D6			
		normal metabolisers (NMs).				
		After repeated 84 mg once daily d				
		AUC ₀₋₂₄ are predicted to be 3.1- a				
		normal metabolisers (NMs) with m				
		compared to healthy CYP2D6 nor	mai metabolisers (INMS) recei-			
		ving Cerdelga 84 mg twice daily. Steady state PK exposure could r	ot be predicted in CVP2D6 inter-			
		mediate metabolisers (IMs) and p				
		and moderate hepatic impairment	· · · · ·			
		data. The effect of severe hepatic				
		subjects with any CYP2D6 pheno				
		Renal impairment:				
		Effect of severe renal impairment	was evaluated in a single dose			
		phase 1 study. After a single 84 m				
			were similar in CYP2D6 normal metabolisers (NMs) with severe			
		renal impairment and healthy CYF				
		Limited or no data were available				
		CYP2D6 intermediate metabolise				
ref. 3	0	(PMs) with severe renal impairme Indication:	nt.			
SmPC Cerdelga	0	Cerdelga is indicated for the long-	term treatment of adult patients			
(eliglustat), USA,		with Gaucher disease type 1 (GD	•			
29-08-18.		metabolizers (NMs), intermediate				
		metabolizers (PMs) as detected b				
		Limitations of use:	-			
	UM: AA	 Patients who are CYP2D6 ultra- 	rapid metabolizers (URMs) may			
		not achieve adequate concentra				
		therapeutic effect.				
		A specific dosage cannot be rec				
		whose CYP2D6 genotype canno	or de determined (indéterminaté			
		metabolizers). <u>Dosage</u> :				
		Patient selection				
		Select patients with Gaucher dise				
		2D6 metabolizer status. It is recor				
		established using an FDA-cleared				
		genotype.				
		Recommended adult dosage				
		The recommended dosage of Cer				
		patient's CYP2D6 metabolizer sta				
		Table 1: Recommended Dosage Reg CYP2D6 Metabolizer Status	CERDELGA Dosage			
		NMs				
		IMs	84 mg twice daily			
		PMs	84 mg once daily			
		Dosage adjustment in NMs and IM				
		ment and concomitant use of CYF				
		Reduce dosage frequency of Cere				
1	1	CYP2D6 NMs and IMs with or wit	hout hepatic impairment taking			
		CYP2D6 or CYP3A inhibitors, as	a hauna in table 0			

					т				
ref. 3, continua-		nmended Dosage of							
tion	CYP Inhibitors	etabolizer, Hepatic Im	pairment Status, ar	na Concomitant					
	CYP2D6	Hepatic	Concomitant CY	P Inhibitor					
	Metabolizer	Impairment							
	Status	Status							
	NMs	Without Hepatic	Taking a strong						
		Impairment	CYP2D6 inhibi						
			Taking a strong CVP3A inhibit						
		Mild (Child-Pugh	CYP3A inhibito Taking a weak	CYP2D6 inhibitor					
		Class A) Hepatic	Taking a strong						
		Impairment	weak CYP3A i	nhibitor					
	IMs	Without Hepatic	Taking a strong						
	Contraindiant	Impairment	CYP2D6 inhibi	tor					
	Contraindicat	ontraindicated in th	a following patien	te based on					
		abolizer status due							
		ation of the PR, QT							
	NMs	,	,						
	 Taking a str 	ong or moderate C	YP2D6 inhibitor c	oncomitantly with					
	a strong or	moderate CYP3A ir	hibitor	-					
		r severe hepatic im							
		impairment and ta	king a strong or m	noderate CYP-					
	2D6 inhibito	or							
	IMs	ang ar madarata ()	VD2D6 inhibitor o	oppomitantly with					
		ong or moderate C` moderate CYP3A ir		oncomitantiy with					
		ong CYP3A inhibito							
		of hepatic impairme							
	PMs								
	Taking a str								
	Any degree								
	Warnings:								
				ases in ECG intervals (PR,					
		QTc, and QRS) at substantially elevated eliglustat plasma concen-							
		ations and may increase the risk of cardiac arrhythmias. Jse of Cerdelga is contraindicated, to be avoided, or requires							
		ustment in patients ding CYP2D6 meta							
	degree of h								
	and Drug in								
	0	Drug interactions:							
		Coadministration of Cerdelga with:							
		CYP2D6 or CYP3A inhibitors may increase eliglustat concentra-							
		tions which may increase the risk of cardiac arrhythmias from							
		n of the PR, QTc, a							
		strong CYP3A inducers decreases eliglustat concentrations which							
		Cerdelga efficacy.	nanagement of in	teractions with					
	drugs affectir		nanayement of In	ILETACIONS WILL					
		lga is contraindicate	ed to be avoided	or may require					
		tment depending of							
		abolizer status.							
	Table 3:		2D6 Metabolizer S	tatus					
	Prevention	NMs	IMs	PMs					
	and								
	Management Strategies of								
	Drug Interactions								
	Interactions Affecting								
	Interactions Affecting Cerdelga								
	Interactions Affecting Cerdelga Based on								
	Interactions Affecting Cerdelga Based on CYP2D6								
	Interactions Affecting Cerdelga Based on								
	Interactions Affecting Cerdelga Based on CYP2D6 Metabolizer								

ref. 3, continua-		DrugConcomi				
tion		tant Drug(s)				
		CYP2D6 Inhibite				
		Strong		equency of	Continue	
		Moderate		g to once daily	Cerdelga	
		Weak		lga 84 mg twice	84 mg once	
			da	daily ^a		
		CYP3A Inhibitor		2 • • •		
		Strong	Reduce fre-		ndicated	
		Moderate	quency of Cer-	Avoid coad	Iministration	
			delga 84 mg to once daily			
		Weak		lga 84 mg twice	Avoid	
		weak		aily	coadministration	
		CYP2D6 Inhibit		ith a strong CYP3A		
		Strong		Contraindicated		
		Moderate				
		CYP2D6 Inhibite	or Concomitantly w	ith a moderate CYF	P3A Inhibitor	
		Strong	Contrai	ndicated	Avoid coadmi-	
		Moderate			nistration ^a	
		CYP3A Inducer				
		Strong		void coadministrati		
			P2D6 inhibitor due	to little or no CYP2	D6 activity in	
		CYP2D6 PMs.	opulations			
		Use in specific				
		Renal Impairme		a al iman airma a ratha		
				nal impairment ba	ased on the	
			D6 metabolizer st	alus.		
		NMs	a in patienta with	and atoms repair		
		Avoid Cerdelg				
				e (eCLcr) less tha	n 15 mL/min not	
		on dialysis or				
		No dosage ad				
		moderate, or s				
		IMs and PMs				
		Avoid Cerdelg				
		Hepatic Impairn		notio impoirmont	based on CVD	
				patic impairment		
			r status and cond	comitant use of C	YP2D6 or CYP3A	
		inhibitors.				
		NMs	ntraindiantad in r	actionto with		
			ontraindicated in p		nt	
				hepatic impairme		
				B) hepatic impair		
			YP2D6 inhibitor	balic impairment	taking a strong or	
				ordolao 01 ma to	anaa dailu in	
				erdelga 84 mg to	once daily in	
			nild hepatic impa	innent taking.		
		- a weak CYP	2D6 Inhibitor derate, or weak (VP3A inhihitar		
					nto with mild	
				nmended in patie		
		IMs and PMs	ment, unless oth	erwise specified a	above.	
			unterning dispote dia a	ationto with any	deares of benetic	
			ntraindicated in p	batients with any	degree of hepatic	
		impairment.				
		Pharmacokineti	<u>CS</u> :			
	PM: A	Absorption			te d'anne de com	
				harmacokinetics		AUC in
				increases in a mo		comparison with
				se range of 42 to		NM:
					after multiple oral	IM: 200-400%
				ls, eliglustat syste		PM: 700-900%
					tate compared to	1 WI. 7 00-300 /0
				pharmacokinetic		
					dependent. Com-	
					mg twice daily at	
			7- to 9-fold highe			
		Dosing of Cerde	elga 84 mg once	daily has not bee	n studied in PMs.	

r		Γ							т		
ref. 3, continua-							a physiolo				
tion		based pharmacokinetic (PBPK) model with 84 mg once daily were 75 ng/mL and 956 hr·ng/mL, respectively.									
		•		•							
	IM: AA						ers for elig				
		healthy su	•	llowing mu	ultiple dos	es of 84 r	ng CERD	ELGA			
		twice dail									
						liglustat fo	ollowing Mu	ıltiple			
		Doses of 8	4 mg CER	DELGA IV		Matakalla					
		Doromote		N II		Metaboliz		1-0			
		Paramete	er		∕Is :96)	IMs (n=1)	PN (n-				
		C _{max} (ng/	ml)a		%) to 25.0	(n=1) 44.6	<u>n=</u> 113 (32%				
		Omax (Hg/	···· L)		1%)	0	(40				
		AUCtau			%) to 143	306	922 (33%				
		(ng·hr/mL) ^a		0%)		` (38	,			
		Median T		1.5 [0.5 to	o 3.0] to 2	2	3 [2	to 4]			
		[min to m		[1.5 t							
					ues from m						
					each maxin	num plasm	na concentr	ation			
			rom multipl		ommondo	i anezoh h	n PMs [see	Dosadel			
		Eliminatio	•			a uusaye I	111 1113 [386	, Dosayej.			
				elimination	half-life v	vas annro	oximately	6.5 hours			
					urs in PMs		- and a construction of the construction of th				
		Specific F									
		Patients v			nt						
						r in CYP2	2D6 NMs v	with			
							Ms. Eliglu				
							or PMs w				
					s unknown			,, ,			
		Patients v									
						hly variab	le with the	e coeffi-			
							or C _{max} an				
							nd modera				
		tic impairr									
					cs of eliglu	ustat in C	YP2D6 IN	ls and			
		PMs with	mild and	moderate	hepatic in	npairmen	t is unkno	wn. The			
		effect of s	evere he	patic impa	irment in s	subjects v	with any C	YP2D6			
		phenotype									
		Drug inter									
					of drug int	eractions	on the ph	armaco-			
		kinetics of									
			rug Interac		ting Eliglus						
		Conco			P2D6 Meta						
		mitant		Ms	IN	-		Ms			
		Drug(s) CYP2D6	C _{max}	AUC _{tau}	C _{max}	AUC _{tau}	C _{max}	AUC _{tau}			
		Paroxe-	\uparrow 7.0-	↑ 8.4-	↑ 2.1-	↑ 2.3-					
		tine	fold	fold	2.1- fold ^a	∣ 2.3- foldª					
		(strong)					NI -				
		Torbi 1 2 8 1 4 5 1 6 folda NO Inclease									
		nafine fold ^a fold ^a									
		rate)									
		CYP3A Ir				A F 4		4.0.0			
		Ketoco	↑ 4.0- fold	↑ 4.4-	↑ 4.4- foldª	↑ 5.4- foldª	↑ 4.3- fold ^{a,b}	↑ 6.2- fold ^{a,b}			
		nazole (strong)	fold	fold	fold ^a	fold ^a	1010,5	1010-37			
		Fluco-	↑ 2.8-	↑ 3.2-	↑ 2.5-	↑ 2.9-	↑ 2.4-	↑ 3.0-			
		nazole	fold ^a	fold ^a	fold ^a	fold ^a	fold ^{a,b}	fold ^{a,b}			
		(mode-									
		rate)									
					ntly with CY		oitors				
		Paroxet	↑ 16.7-	↑ 24.2-	↑ 7.5-	↑ 9.8-					
		ine with	fold ^a	fold ^a	fold ^a	fold ^a	Expecte	d similar			
		ketoco-						e as with			
		nazole Terbina	↑ 10.2-	↑ 13.6-	↑ 4.2-	↑ 5.0-	CYP3A	inhibitors			
		fine	fold ^a	fold ^a	4.2- fold ^a	∣ 5.0- foldª	alo	ne ^d			
			1010	1010	1010	1010	1				
		with									

ref. 3, continua-	fluco-							
tion	nazole							
	CYP3A Inducers	5						
	Rifam-	↓ 90%°		↓ 95%				
	pin							
	(strong)							
	^a Predicted pharmacokinetic parameters based on PBPK models							
	^b Following coadn	ninistration with CI	ERDELGA 84 m	g once daily				
	^c Following coadministration with CERDELGA 127 mg twice daily (1.5							
	times the recommended dosage)							
	^d Due to little or no CYP2D6 activity in CYP2D6 PMs							
	\uparrow = Increased; \downarrow = Decreased							
	No clinically significant pharmacokinetic changes were observed							
	for eliglustat wh	en coadminister	ed with intrave	nous rifampin (an				
	OATP inhibitor).			• •				

Risk group	IM with CYP2D6 inhibitors, IM and PM with CYP3A inhibitors, UM with CYP3A4-inducers

Comments:

- An article evaluating the effect of CYP2D6 phenotype on AUC of eliglustat was not included (Peterschmitt MJ et al. Safety, tolerability, and pharmacokinetics of eliglustat tartrate (Genz-112638) after single doses, multiple doses, and food in healthy volunteers. J Clin Pharmacol 2011;51:695-705. PubMed PMID: 20864621). The only PM in the study (n = 36, of which 12 received placebo and the remaining 24 healthy volunteers were divided over 3 dose groups (42 mg, 168 mg and 294 mg)) was randomized to the placebo group. AUC was determined after a single dose. Patients were divided over 5 phenotype groups, including 'intermediate to normal' and 'normal to ultra-rapid', that were not defined. It was not stated whether the calculated AUCs were corrected for dose.

An article showing that with lower eliglustat doses (21 mg, 42 mg once daily) the PBPK model predicted exposure in IM and PM was within the outlined safety margin (C_{max} <250 ng/mL) when eliglustat was administered with ketoconazole, where the current recommendation is a contraindication of coadministration, was not included (Sahasrabudhe SA et al. Physiologically-based pharmacokinetic model development, validation, and application for prediction of eliglustat drug-drug interactions. Clin Pharmacol Ther 2022;112:1254-63. PMID: 36056771). The model was not based on new data, but on the eliglustat registration studies and the results from the modelling were not included in the SmPC, so do not add to the SmPC data.

	Phenotype	Code	Gene-drug interaction	Action	Date
KNMP Pharmacogenetics	PM	1A	yes	yes	6 November 2023
Working Group decision	IM	1AA	yes	yes	
	UM	0A	yes	yes	

Date of the literature search: 23 September 2023.

Mechanism:

Eliglustat is predominantly metabolised into inactive metabolites by CYP2D6 and to a lesser extent by CYP3A. Eliglustat is an inhibitor of CYP2D6 and P-gp. Thus, eliglustat inhibits its own metabolism by inhibiting CYP2D6. This results in a nonlinear dose-concentration relationship.

Clinical Implication Score:

Potentially	PGx testing for this gene-drug pair is potentially beneficial. Genotyping can be	0-2 +	
beneficial	considered on an individual patient basis. If, however, the genotype is available,		
	the DPWG recommends adhering to the gene-drug guideline		
Beneficial	PGx testing for this gene-drug pair is beneficial. It is advised to consider geno- typing the patient before (or directly after) drug therapy has been initiated to guide drug and dose selection	3-5 +	
Essential	PGx testing for this gene-drug pair is essential for drug safety or efficacy. Genotyping must be performed before drug therapy has been initiated to guide drug and dose selection	6-10 +	

Table 1: Definitions of the available Clinical Implication Scores

 Table 2: Criteria on which the attribution of Clinical Implication Score is based

Clinical Implication Score Criteria		Given Score	
Clinical effect associated with gene-drug interaction (drug- or diminished efficacy-			
induced)			
CTCAE Grade 3 or 4 (clinical effect score D or E)			
CTCAE Grade 5 (clinical effect score F)	++		
Level of evidence supporting the associated clinical effect grade ≥ 3			
 One study with level of evidence score ≥ 3 			
 Two studies with level of evidence score ≥ 3 	++		
 Three or more studies with level of evidence score ≥ 3 	+++		
Number needed to genotype (NNG) in the Dutch population to prevent one clinical			
effect grade ≥ 3			
• 100 < NNG ≤ 1000	+		
• 10 < NNG ≤ 100	++		
• NNG ≤ 10	+++		
PGx information in the Summary of Product Characteristics (SmPC)			
At least one genotype/phenotype mentioned	+		
OR			
Recommendation to genotype	++	++	
OR			
At least one genotype/phenotype mentioned as a contra-indication in the	++		
corresponding section			
Total Score:		2+	
Corresponding Clinical Implication Score:			
Score according to the SmPC:			