

VKORC1: warfarin

6235/6236

95% CI = 95% confidence interval, AA = homozygous for the variant allele (= -1639 AA = 1173 TT), GA = heterozygous (= -1639 GA = 1173 CT), GG = homozygous for the wild type allele (= -1639 GG = 1173 CC), HR = hazard ratio, INR = international normalised ratio, NS = not significant, RR = risk ratio, S = significant, VKORC1 = vitamin K epoxide reductase, subunit 1

Disclaimer: The Pharmacogenetics Working Group of the KNMP formulates the optimal recommendations for each phenotype group based on the available evidence. If this optimal recommendation cannot be followed due to practical restrictions, e.g. therapeutic drug monitoring or a lower dose is not available, the health care professional should consider the next best option.

Concise summary and justification of choices:

Warfarin exerts its anti-coagulant effect by inhibiting the activity of the VKORC1 enzyme. Variations in the VKORC1 gene can result in reduced expression of the enzyme. In patients with these gene variations, the warfarin dose required to attain the therapeutic INR is lower.

Four meta-analyses showed a clear effect of the homozygous variant genotype AA on the required warfarin dose. There was only one meta-analysis of the clinical effects. This meta-analysis found a 2-fold increase in the risk for INR > 4 (2.5-fold in the first month of therapy). However, the meta-analysis did not find a significant increase in bleeding risk. Despite direct evidence for an increase in bleeding risk is lacking, we consider the effect of the gene-drug interaction on the dose and risk for overanticoagulation strong enough to recommend adjustment of therapy by starting with a lower warfarin dose (yes/yes-interaction).

The effect of heterozygous variant genotype GA on the required warfarin dose and risk of overanticoagulation is smaller. The risk for INR > 4 was increased 1.5-fold (1.9-fold in the first month of therapy). In addition, GA is the most frequent genotype in the European/Caucasian population, so dosing will be based mainly on this genotype. For these reasons, we do not recommend adjustment of therapy for this gene-drug interaction (yes/no-interaction).

You can find an overview of the effects per genotype in the background information text of the corresponding genotype-drug interaction on the KNMP Kennisbank. You might also have access to this background information text via your pharmacy or physician electronic decision support system.

The justification of the dose recommendation for AA and a note on the meta-analyses comparing genotype-guided with non-genotype-guided dosing you will find below.

Dose recommendation for AA

Dose reductions in comparison with GG vary from 49-50% for all studies and 50-52% for studies in Caucasians. Dose reductions in comparison with GA, the most prevalent genotype in Caucasians, vary from 31-34% both in all studies and in studies in Caucasians. Dose reductions in comparison with GA+GG vary from 39% for all studies and 42-44% for studies in Caucasians. Because dosing in Caucasians will be mainly based on the groups with genotypes GA and GG, we recommend to adjust the therapy for AA by starting with 60% of the normal (i.e. not genotype guided) dose. The dosing algorithm from the EU-PACT study (Avery 2011) is added to allow a more accurate dose calculation. *Note*

The meta-analyses of studies comparing genotype-guided with not genotype-guided dosing showed little or no improvement of clinical outcomes by genotype-guided dosing. However, these studies considered only data for the whole group, including the patients without variant alleles. The absence of an effect for the whole group does not preclude an effect for the patients with the expected most benefit of genotype-guided dosing, i.e. the patients homozygous for variant alleles. In addition, in several of the included studies the initial dose was fixed and not genotype-guided. In patients with known genotypes, also the initial dose can be adapted.

The table below follows the KNMP nomenclature for the VKORC1 polymorphism and genotypes. The nomenclature used in the table below may therefore differ from the nomenclature used by the authors in the article.

Source	Code	Effect	Comments
ref. 1	4	Meta-analysis of 7 studies with 562 pediatric patients. Pa-	Author's conclu-
Zhang J et al.		tients were predominantly Caucasian. Studies differed in	sion:
The influence of		target INR and mean age. In one study warfarin dose was	'We found that
VKORC1 gene poly-		corrected for body weight.	VKORC1-1639
morphism on warfa-			gene polymor-

Later and the term of the term	1	D "						
rin maintenance dosage in pediatric		Results:					a a maturaly	phisms have a moderate effect on
patients: A systema-		Dose in o	warfarin dosage in					
tic review and meta-			polymor		mear	0.22 mg/kg	5% Cl	pediatric patients.'
analysis.		U U	determir		differ	-	570 CI	poulauro patieritor
Thromb Res	GA: A		-1639 G		-26%		2231	
2015;136:955-61.	AA: A		-1639 G		-50%		3465	
PubMed PMID:	/ / / . / /		1173 C>		NS			
26433837.		Number	of studie	s and pa	tients	per genoty	pe for each	
not a continuation		comparis	son:	-			-	
ref. 1, continuation		-1639 G	>A deteri				: 239 GA, 80	
		4470.05	T 1 4			165 GG		
		1173 C>	i determ		stuale 8 GG	es, n = 38:	20 AA and	
		The hete significar				studies wa	s high and	
		- ĂA, -16						
		- AA, 117						
						in both cas		
							a significant	
		differenc				ublication b	ias	
ref. 2	4						als with 1,910	Author's conclu-
Liao Z et al.		patients co	omparing	g genotyp	be-gui	ded dosing	(n = 960) with	sion:
Meta-analysis of						950). The i		'Allocation to
randomized control-							e follow-up	genotype plus
led trials reveals an							aried from 46 al dose in the	clinical algorithm may be associated
improved clinical outcome of using							e other 3 trials,	with a significant
genotype plus clinical		• •		• •			all trials, geno-	improvement of
algorithm for warfarin							jorithm inclu-	the percentage of
dosing.							llest trial, geno-	
J Thromb Thrombo-					sed or	n the genot	ypes of both	therapeutic INR
lysis		CYP2C9 a	-	-	difford	d hotwoon	the triale	range for patients
2015;39:228-34. PubMed PMID:						ed between	ding, thrombo-	adopting fixed dose of warfarin.
24962733.							any cause,	The incidence of
							ent or other	total adverse
							nagement, INR	events and death
		> 4 (3 trial						rates did not differ
		A fixed-eff was heter					es, also if there	between these two groups.'
		was neter	ogeneity	Detweel	i ule s	luules.		groups.
		Results:						
		Genotyp guided th		l in comp	arisor	n with not-g	enotype-	
							% of pa-	
	geno-						tients in	
	type-						not-geno-	
	guided versus						type-gui- ded group	
	not ge-	% of time	e within	all (5 tri	als	NS		
	notype-	the thera		n = 1,72				
	guided	INR rang		fixed in		+0.24	7	
	therapy:	(standar		dose (3		(95% CI:		
	AA [#]	mean dif	feren-	trials, n	<	0.09-0.40)	
		ce)	a	700)		(S)	0.00/	
		Adverse	events	4 trials, n = 1,76		NS	38%	
		Death		3 trials,		NS	0.64%	
				n = 1,5			0.0170	
				tween th		s was only	significant	
		and mod			a tha t	horonoutia	IND rongs	
		all trials			i ine t	пегареціс	INR range,	
				blication	bias v	vere not for	und.	
L	I							1

ref. 2, continuation											
,		determined for	NOTE: The authors do not state whether the polymorphism determined for VKORC1 in the included trials was -1639 G>A or 1173C>T.								
ref. 3 Xu H et al. Meta-analysis of efficacy and safety of genotype-guided pharmacogenetic dosing of warfarin. Int J Cardiol 2014;177:654-7. PubMed PMID: 25449474.	4	Meta-analysis patients comp with not geno of patients pe duration varie the not-genot trials, it was c genotype-guid CYP2C9 and CYP2C9 geno CYP2C9, VK0 The therapeu 5 of the trials	s of 8 randomized paring genotype-g type-guided dosir r trial varied from d from 28 to 90 d ype-guided group alculated with a c ded dosing was b VKORC1. In 1 tria otype and in 1 tria ORC1 and CYP4I tic INR range diffe in this meta-analy lysis of Liao 2015	Author's conclu- sion: 'We found that time in the thera- peutic INR range of the genotype- guided group was increased compa- red with the control group in the RCTs when the initial warfarin dose was fixed. However, the genotype-gui- ded group failed to exhibit statistically							
			uided in comparis apy:	on with not-gen	otype-	significant out- come compared					
					% in not-ge- notype- guided group	to the control group in the stu- dies using equa- tion initial dose. Only a limited					
	geno- type- guided versus not ge- notype- guided therapy: AA [#]	therapeutic INR range (standardi- zed mean	all (8 trials)	Not determi- ned due to high hetero- geneity		recommendation can be made that genotype-guided pharmacogenetic algorithm should be applied to guide warfarin dose rather than fixed dose The results from our meta-analysis					
			fixed initial dose (5 trials, n = 812) not fixed initial dose (3 trials, n = 1,286)	+0.30 (95% Cl: 0.08- 0.53) (S) NS	-						
		follow-up ≤ 28 days (3 trials, n = 1,218) follow-up > 28	NS +0.25 (95%	-	indicated that there was no be- nefit of genotype-						
			days (5 trials, n = 880)	CI: -0.00- 0.51) (NS, trend)		guided dosing of warfarin with res- pect to hemorrha- gic events. But this					
		Major bleeding	8 trials	NS	2.6%	should be interpre- ted with caution					
		Minor bleeding		NS		because of the number of events					
		Thrombo- embolic events		NS		was relatively small.'					
		INR > 4		NS							
		for: - percentage all trials - percentage follow-up >	Heterogeneity between the trials was only significant for: - percentage of time within the therapeutic INR range,								
		determined fo G>A or 11730	NOTE: The authors do not state whether the polymorphism determined for VKORC1 in the included trials was -1639 G>A or 1173C>T.								
ref. 4 Franchini M et al.	4		s of 9 randomized paring genotype-g			Author's conclu- sion:					

Effects on bleeding complications of pharmacogenetic testing for initial dosing of vitamin K antagonists: a systematic review and meta-analysis. J Thromb Haemost 2014;12:1480-7. PubMed PMID: 25040440. ref. 4, continuation	geno-										
	type- guided versus not ge- notype- guided therapy: AA [#]	guided thera	6 trials, n = 2,131	RR = 0.47 (95% CI: 0.23- 0.96) (S) najor bleeds were	% in not-ge- notype- guided group 2.2%						
		Thrombo- embolic events Deaths INR > 4 % of time	from the analy		46.8%						
		within the therapeutic INR range	mean difference standardized mean difference	NS	-						
		within the the geneity for the There were no the following of to stable warf and number of NOTE: The an	Heterogeneity was very high for the percentage of time within the therapeutic INR range. There was no hetero- geneity for the other outcomes. There were not enough data to perform meta-analysis for the following outcomes: time to first therapeutic INR, time to stable warfarin dose, number of patients with INR < 2 and number of days in hospital. NOTE: The authors do not state whether the polymorphism determined for VKORC1 in the included trials was -1639								
ref. 5 Stergiopoulos K et al. Genotype-guided vs clinical dosing of warfarin and its analogues: meta- analysis of rando- mized clinical trials. JAMA Intern Med 2014;174:1330-8. PubMed PMID: 24935087.	4	Meta-analysis patients comp with not geno of patients pe from the Unite period varied weeks). In 6 t the genotypes based only or genotypes of One of the ind acenoumarol The therapeu The 9 trials in Franchini 201	Author's conclu- sion: 'In this meta-analy- sis of randomized clinical trials, a genotype-guided dosing strategy did not result in a greater percentage of time that the INR was within the therapeutic range, fewer patients with an INR greater than 4, or a reduc- tion in major blee-								

ref. 5, continuation		Results:					ding or thrombo-					
		Genotype-guided in comparison with not-genotype- embolic events										
		guided	therapy:		1		compared with					
						% in	clinical dosing algorithms.'					
						not-ge- notype-	algonums.					
						guided						
						group						
	geno-	% of tin	ne within the	9 trials	NS	group						
	type-	therape	utic INR range									
	guided	· ·	rdized mean									
	versus	differen										
	not ge- notype-	INR > 4		8 trials,	NS	28%						
	guided	Major b	looding	n = 2,621 7 trials,	NS	1.6%						
	therapy:		leeding	n = 2,586	IN O	1.0%						
	AA	Thromb	oembolic	7 trials,	NS	1.2%						
		events		n = 2,586								
		Analyse	es of subgroups	s based on stud	ly qualit	y, study						
				e did not result i								
				either did exclus	sion of a	any single						
			n the analyses		-tc -:	f time = 1 - 141						
				h for the percer range. There w								
			ne other outcon		as 110 1	leterogene-						
					not foun	d.						
		L	Indications for publication bias were not found.									
		NOTE: The authors do not state whether the polymorphism										
				1 in the include	d trials	was -1639						
			173C>T.									
ref. 6 Jin B et al.	4	Meta-ana	Author's conclu- sion:									
The impact of			Patients were and African in 2	'This meta-analy-								
VKORC1-1639G > A		target IN		sis indicated that								
genetic polymor-		0		the VKORC1-1639								
phism upon warfarin		Results:		G>A genetic poly-								
dose requirement in		Dose in	comparison w				morphism is asso-					
different ethnic popu- lations.		geno-		weighted mea difference	an	95% CI	ciated with the variation of inter-					
Curr Med Res Opin		type		(mg/day)		95% CI	individual warfarin					
2014;30:1505-11.		GA		-1.32	-1	.670.96	dose requirement					
PubMed PMID:	GA: A		Caucasian	-1.17		.550.80	in different ethnic					
24708259.	0A. A		Asian	-1.72		2.960.48	populations.'					
			African	-1.40		2.040.77						
		AA		-2.62	-3	8.102.14						
	AA: A		Caucasian	-2.47		2.922.03						
			Asian	-2.84		.571.11						
		Tatalas	African	-2.76		8.541.99						
			omper of patien	ts and patients	per gei	notype for						
				2: 1437 GA, 12	21 A A	1274 GG						
		Caucas										
		Caucasian: n = 2529: 1110 GA, 393 AA, 1026 GG Asian: n = 1091: 226 GA, 799 AA, 66 GG										
		African				182 GG						
			• •	ween the studie		•						
		for all c		cept for the Afr								
		Thora			000001219							
			vere no indicati ults were not ir									
		The res		fluenced by the								
		The res individu	ults were not ir	nfluenced by the ne analyses.								
		The res individu Dose in	ults were not ir al study from th	fluenced by the ne analyses. ith GA: weighted mea	e omiss	ion of any						
		The res individu	ults were not ir al study from th	fluenced by the ne analyses. ith GA: weighted mea difference	e omiss							
		The res individu Dose in geno-	ults were not ir al study from th	fluenced by the ne analyses. ith GA: weighted mea	e omiss	ion of any						

ref. 6, continuation		Total number	ar of patients a	nd notic	nte por const					
		Total number of patients and patients per genotype: n = 1503: 1110 GA, 393 AA								
		The heterog								
		There were								
		The results								
		individual st	udy from the a	nalysis.						
ref. 7	4	Meta-analysis	Author's conclu-							
Yang J et al.		were Caucas		sion:						
Influence of CYP2C9		rican in 3 stu	Both CYP2C9 and							
and VKORC1 geno- types on the risk of		periods for bl weeks to 6 ye	VKORC1 genoty- pes are associated							
hemorrhagic compli-		Of the 10 stu	•							
cations in warfarin-			nalysis of Jin 2		,		risk for warfarin			
treated patients: a							over-anticoagula-			
systematic review		Results:					tion, with VKORC1			
and meta-analysis. Int J Cardiol		GA in comp	arison with GO	j:		Inci	c. −1639 G > A more sensitive			
2013;168:4234-43.				HR	95% CI	Inci- dence	early in the course			
PubMed PMID:				1111	93 /0 CI	for GG	of anticoagulation.'			
23932037.		INR > 4		1.49	1.15-1.92	23%	5			
	GA: A	(6 studies,	0-30 days	1.90	1.44-2.52	1				
		n = 2,486)	> 30 days	NS						
		Total		trend	0.98-2.99	15%				
		bleeding (4 studies, n = 504)	Caucasian	NS						
			Asian	-						
			l no significant h	otorogor	 	tho				
		studies.								
		Publication								
		ding.								
		The HR's w								
		individual st								
			in comparison with GG:							
				HR	95% CI	Inci- dence				
						for GG				
		INR > 4		2.18	1.03-4.63	23%				
	AA: A	(6 studies,	0-30 days	2.59	1.96-3.43					
		n = 1,745)	> 30 days	NS		450/				
		Total	· · ·	NS		15%				
		bleeding (4 studies,	Caucasian	NS						
		n = 555)	Asian	-						
			eneity betwee	n the stu	idies was hig	h and				
		significant fo								
			bias could not	be exclu	ded for total	blee-				
		ding.	NR > 4, the HF	l'e More	not influence	d by the				
			any individual							
			, significance v							
			2012 or Wade							
			the largest stu		h respectively	y 557				
		and 1496 C	aucasian patie	nts.						
		GA+AA in c	omparison with	n GG:		Inci				
				HR	95% CI	Inci- dence				
					90 % UI	for GG				
		INR > 4	1	1.93	1.24-2.99	22%				
		(7 studies,	0-30 days	2.14	1.75-2.62					
		n = 3,691)	> 30 days	NS		1				
		Total		NS		25%				
1		bleeding	Caucasian	NS		1				
			oudouoluli	110						

rof 7 continuation	1	/E atua		lan						
ref. 7, continuation		(5 stud n = 1,2		sian	-					
			bleeding		NS			7,9%		
			lies, n = 7					7,370		
				ity between	the stu	udies wa	as hiah	and		
			ant for IN							
			ation bias							
		major l	bleeding.							
			R's were I							
			ual study							
ref. 8	4			16 studies. N	lost s	tudies w	/ere ret	rospec-	Author's conclu-	
Jorgensen AL et al.		tive coh		sion:						
Influence of CYP2C9 and VKORC1 on				ot state whic There are ir					'Effect estimates were significant for	
patient response to				nition of the					VKORC1 and	
warfarin: a systema-				ns determine					stable dose for	
tic review and meta-				icasians and					most ethnicities,	
analysis.				t allele acco					although direction	
PLoS One		identifie	d based o	on the directi	on of t	the effec	ct.		differed between	
2012;7:e44064.				in this meta					asians and non-	
PubMed PMID:				s of Jin 2014	and 0) in the n	neta-ar	alysis of		
22952875.		Yang 20)13.						pes requiring more	
		Desults							in asians and less	
		Results:		is an with CC	·.				in non-asians).'	
		Dose I	n compar	ison with GG		diffe-				
			polymor			ence				
		geno	phism			in				
		type	deter-	ethnicity	m	neans	95%	6 CI		
		- 16-	mined			(mg/				
						day)				
	GA: A	GA	1173	Caucasia	n -	1.68		2.85		
	GA. A		C>T	Japanese		0.81		1.25		
			-1639	Caucasia		1.45		2.18		
			G>A	Chinese		1.45	-1.13	1.77		
			4470	Japanese		NS	0.07	0.04		
		AA	1173 C>T	Caucasia	n -	3.14	-2.67	3.61		
	AA: A		-1639	Caucasia	n	2.86	2 /0	3.23		
			G>A	Caucasia		2.00	-2.43	3.23		
		Numbe		es for each	compa	rison:				
			>T deter			s (2 Cau	icasian)		
		-1639	G>A dete	rmined: 10						
		The he	eterogene	ity between	the stu	udies wa	as signi	ficant		
		for:								
				aucasian, -1			rmined			
		- GA, J	lapanese	, -1639 G>A	deterr	mined				
		Thorow	oro not o	nough studie	o for i	moto on		oftime		
				nough studie d of bleeding						
				in both case		uules (1	NOILI-			
ref. 9	4			19 studies w		75 Cau	casian	1.021	Author's conclu-	
Yang L et al.	.			rican patient					sion:	
Impact of VKORC1		target IN		1					'Our studies	
gene polymorphism		Of the 1	9 studies	showed that gene						
on interindividual and		the meta	polymorphisms of							
interethnic warfarin		Yang 20	VKORC1 signifi-							
dosage requirement		Results:								
a systematic review		Results:	with the variation of interindividual							
and meta analysis. Thromb Res		Weight	warfarin dose							
2010;125:e159-66.			/ith GG: prphism			mean	1		requirement varia-	
PubMed PMID:		determ				fference	9	5% CI	tion, and the ef-	
19942260.		1173 C				-49%		255	fects are different	
	AA: A			Caucasian		-52%		457	in ethnicities.'	
				Saacaolali		02/0	-7	. 01	1	

	T	1.1			· · · · · · · · · · · · · · · · · · ·				
ref. 9, continuation			Asian	-37%	-3545				
		-1639 G>A		-50%	-4654				
			Caucasian	-50%	-4555				
			Asian	-38%	-553				
		Number of stud			and pa-				
		tients per genot							
		1173 C>T deter	rmined: 6 stud 338 G		233 AA,				
		-1639 G>A dete		dies, n = 1837	, 687 AA,				
		The heterogene and high.							
		There were no							
		The mean differ							
		sion of any indi							
		Weighted mean rison with GG+		the dose for A	A in compa-				
		polymorphism		mean	95% CI				
		determined 1173 C>T		difference -39%	-3244				
			Caucasian	-39%	-3244 -3551				
			Asian	-44 %	-2238				
		-1639 G>A		-31%	-3543				
			Caucasian	-42%	-3547				
			Asian	-32%	-21 - 41				
		Number of stud							
		tients per genot	type for each c	omparison:					
		1173 C>T deter			, 395 AA,				
		-1639 G>A dete		GHGA Judies n = 375	1 1057 ^ ^				
				GG+GA	, 1001 A A,				
		The heterogene							
		and high.	indiactions for	nublication bi-					
		There were no							
			The mean differences were not influenced by the omis- sion of any individual study from the analysis.						
		Weighted mear rison with GA:	n difference in t	the dose for A	A in compa-				
		polymorphism		mean	95% CI				
		determined		difference					
		1173 C>T		-31%	-2436				
			Caucasian	-31% -27%	-2536				
		-1639 G>A	Asian	-27%	-1933 -2939				
			Caucasian	-34%	-2939				
			Asian	-34%	-2640				
		Number of stud							
		tients per genot			1				
		1173 C>T deter	mined: 8 stud	dies, n = 701, 3	312 AA,				
		1630 0 > 4 dot	389 G arminod: 10 st		1 975 4 4				
		-1639 G>A dete	1496	GA					
		The heterogene							
		and high for the -1639 G>A and							
		rison based on			ale compa-				
		There were no			IS.				
		The mean diffe	rences were no	ot influenced b	y the omis-				
		sion of any indi	vidual study fro	om the analysis	S.				
ref. 10	0	Dosing:	a influence of t						
SPC Coumadin (warfarin), USA, 28-		The initial dose is • Clinical factors			iaht sex				
(wananin), 00A, 20-			including age,		igin, 367,				

10-15. ref. 10, continuation		concomit • Genetic Dosing R Table 1 c Coumadi different ants. If th are know	factors ecomm lisplays n doses combina e patier	(CYP20 endation three ra observe ations of nt's CYP	29 and V ns with C nges of ed in sub CYP2C 2C9 and	KORC1 Consider expecte ogroups 9 and VI I/or VKC	genotyp ation of d mainte of patier KORC1)RC1 ge	Genotyp mance nts havin gene var notype	g
	GA: AA	dose. Table 1: 1 daily dos types [†] VKOR C1 GG AG			on CYP				
	AA: A	AA [†] Ranges a VKORC1 Other co-i minants of <u>Clinical P</u> Pharmac Warfarin min K ep VKOR, a nucleotid -1639G> dose req generally in warfari CYP2C9 lable, car	-1639G> nherited warfarin harmac ogenom reduces oxide in multipro e polym A) have uiremen explain n dose and VK	A (rs992 VKORC1 dose. <u>ology</u> : ics the reg the vita orphism been as ts. VKO the larg requiren ORC1 g	eneratio min K cy zyme co s in the ssociated RC1 and jest prop nents. jenotype	riant is us may also role thro mplex. 0 VKORC d with va d CYP20 portion o	sed in this be impo- ugh inhit Certain s 1 gene (ariable w C9 gene f known	s table. ortant dete ortant dete ortant dete ortan ortan variants variabilit en avai-	

Risk group CYP2C9 polymorphism, use of CYP2C9 inhibitors

Comments:

- We only included meta-analyses in the risk analysis. Separate studies did not contribute enough to the evidence to be included.
- Dosing algorithms:

The size of the effect of VKORC1 variants on warfarin dose differs between ethnicities. The proportional decrease was higher among Caucasians compared with Asians (Yang 2010) and among European Americans compared with African Americans (Limdi NA et al. Race influences warfarin dose changes associated with genetic factors. Blood 2015;126:539-45. PubMed PMID: 26024874). For this reason, only algorithms based on a predominantly Caucasian population are included. For patients with an African or (East-)Asian background, other algorithms might give better results. For patients with an African background, additional CYP2C9 alleles, such as *6, *8 and *11, should be taken into account. Examples of algorithms for patients with an African background can be found in Alzubiedi S et al, Pharmacogenetic-guided warfarin dosing algorithm in African-Americans, J Cardiovasc Pharmacol 2016;67:86-92, PubMed PMID: 26355760 and Hernandez W et al, Ethnicity-specific pharmacogenetics: the case of warfarin in African Americans, Pharmacogenomics J 2014;14:223-8, PubMed PMID: 24018621). The algorithm of Ramirez 2012 below also includes data on African-Americans. Examples of algorithms for patients with an East-Asian background can be found in Chen J et al, A pharmacogenetics-based warfarin maintenance dosing algorithm from Northern Chinese patients, PLoS One 2014;9:e105250, PubMed PMID: 25126975 and Choi JR et al, Proposal of pharmacogenetics-based warfarin dosing algorithm in Korean patients, J Hum Genet 2011;56:290-5, PubMed PMID: 21326313.

In addition, only algorithms based on at least 150 patients are included. Furthermore, only articles are included in which the equation describing the developed algorithm is given.

- Pirmohamed M et al. A randomized trial of genotype-guided dosing of warfarin. N Engl J Med 2013;369: 2294-303. PubMed PMID: 24251363.

227 patients were randomly assigned to genotype-guided warfarin dosing and 228 patients to the control group. The control group received loading doses of 10-5-5 mg (\leq 75 years of age) or 5-5-5 mg (> 75 years of age). The mean percentage of time in the therapeutic range was significantly higher in the genotype-guided

group than in the control group (67.4% and 60.3% respectively). There were significantly fewer incidences of excessive anticoagulation (INR \geq 4.0) in the genotype-guided group. The median time to reach a therapeutic INR was significantly shorter in the genotype-guided group than in the control group (21 days and 29 days respectively).

The genotype-guided algorithms employed were:

- Maintenance dose, slightly modified IWPC model (IWPC, 2009):

 $\sqrt{\text{Dose}(\text{mg/week})} = 5.6044 - 0.02614 \times \text{Age}[\text{in years}] + 0.0087 \times \text{Height}[\text{cm}] + 0.0128 \times \text{Weight}[\text{kg}] - 0.8677 \times \text{VKORC1} - 1639 \text{ GA} - 1.6974 \times \text{VKORC1} - 1639 \text{ AA} - 0.5211 \times \text{CYP2C9} * 1/*2 - 0.9357 \times \text{CYP2C9} * 1/*3 - 1.0616 \times \text{CYP2C9} * 2/*2 - 1.9206 \times \text{CYP2C9} * 2/*3 - 2.3312 \times \text{CYP2C9} * 3/*3 - 0.5503 \times \text{amiodarone} - \text{Initial doses} (\text{Avery et al, 2011}):$

Loading over three days was calculated as followed: $LD3=D/(1 - exp(-24\kappa))(1 + exp(-24\kappa) + exp(-48\kappa))$. Where D was the IWPC predicted maintenance dose per day in mg.

k is the elimination rate constant for the CYP2C9 genotypes:

*1/*1 = 0.0189h-1

*1/*2 = 0.0158h-1

*1/*3 = 0.0132h-1

*2/*2 = 0.0130h-1

*2/*3 = 0.009h-1

*3/*3 = 0.0075h-1

A loading dose regimen was used where the loading dose was gradually reduced, i.e. Day 1 dose > Day 2 dose > Day 3 dose. This was derived from the difference between the predicted daily dose (D) and the 3-day loading dose (LD3) according to the following:

Loading on Day 1: (LD3-D) x 1.5 + D

Loading on Day 2: ((LD3-D) x 1 + D

Loading on Day 3: (LD3-D) x 0.5 + D

- Dose revision on day 4 or 5 (slightly modified model by Lenzini et al, 2010):

 $\begin{aligned} &\text{Dose (mg/week)} = \text{EXP } (3.10894 - 0.00767 \times \text{age} - 0.51611 \times \text{ln(INR)} - 0.23032 \times \text{VKORC1} - 1639\text{A} - 0.14745 \times \text{CYP2C9*2} - 0.3077 \times \text{CYP2C9*3} + 0.24597 \times \text{BSA} + 0.26729 \times \text{Target INR} - 0.1035 \times \text{amiodarone} + 0.0169 \times \text{dose}_{-2} + 0.02018 \times \text{dose}_{-3} + 0.01065 \times \text{dose}_{-4} \end{aligned}$

Where INR is the INR on day 4 or 5.

Dose₋₂ is the dose given 2 days before the INR is measured, $Dose_{-3}$ is the dose given 3 days before the INR is measured, and $Dose_{-4}$ is the dose given 4 days before the INR is measured. $Dose_{-4}$ is only available if the INR is measured on the 5th day.

Body surface area (BSA) is calculated according to the formula by Dubois & Dubois where BSA = (weight $(kg)^{0.425} \times height (cm)^{0.725})/139.2$.

 Ramirez AH et al. Predicting warfarin dosage in European-Americans and African-Americans using DNA samples linked to an electronic health record. Pharmacogenomics 2012;13:407-18. PubMed PMID: 22329724.

An algorithm for the maintenance dose of warfarin was developed based on data from 1022 European-Americans and 145 African–Americans. The algorithm explained 53% of dose variation in European-Americans and 41% of dose variation in African–Americans.

The algorithm is:

log[weekly warfarin dose] = 5.9487517 - 0.0073436353 * race (AA=0,EA=1) - 0.025161445 * age (in years) + 0.058138499 * sex (F=0,M=1) + 1.1848957 * bsa (kg/m²) + 0.068020571 * smoking status (nonsmoker=0, smoker=1) + 0.058578086 * VTE indication (no=0,yes=1) - 0.10646416 * atrial fibrillation indication (no=0, yes=1) - 0.8142521 * amiodarone use (no=0,yes=1) - 0.64877338 * CYP2C9*2 (wt=0,heterozygote=1, homozygote=2) - 1.0601067 * CYP2C9*3 (wt=0,heterozygote=1,homozygote=2) - 1.9737831 * CYP2C9*6 (wt=0, heterozygote=1,homozygote=2) - 1.0622944 * CYP2C9*8 (wt=0,heterozygote=1,homozygote=2) + 0.24749973 * CYP4F2 (wt=0,heterozygote=1,homozygote=2) - 0.31996754 * CALU (wt=0,heterozygote=1, homozygote=2) - 0.87262446 * VKORC1 (wt=0,heterozygote=1,homozygote=2)

Horne BD et al. Pharmacogenetic warfarin dose refinements remain significantly influenced by genetic factors after one week of therapy. Thromb Haemost 2012;107:232-40. PubMed PMID: 22186998. An algorithm for the warfarin dose on day 6-11 of treatment was developed based on data from 1342 patients. The algorithm was validated in a separate retrospective cohort of 342 patients. The algorithm explained 69% of dose variation after about one week of therapy. The algorithm is:

dose (mg/week) = EXP (2.59853 - 0.47578 × Treatment Response Index - 0.17132 × VKORC1 - 0.23385 × CYP2C9*3 - 0.10696 × CYP2C9*2 - 0.00549 × Age in years + 0.16491 × BSA - 0.09091 × Simvastatin Use - 0.251 × Fluvastatin Use - 0.11994 × Amiodarone Use + 0.3319 × Inducer Use + 0.08796 × Target INR - 0.13902 × Stroke + 0.01028 × Day of Therapy)

BSA = body surface area

treatment response index = In(INR/effective dose), with the effective dose calculated by summing weighted prior doses. The relative weights of doses that were prescribed 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10 days ago in the

effective dose calculation were 0.306, 0.804, 0.555, 0.357, 0.229, 0.149, 0.099, 0.067, 0.047, and 0.033, respectively.

Avery PJ et al. A proposal for an individualized pharmacogenetics-based warfarin initiation dose regimen for patients commencing anticoagulation therapy. Clin Pharmacol Ther 2011;90:701-6. PubMed PMID: 22012312.

The European Pharmacogenetics of Anticoagulant Therapy (EU-PACT) study group developed an algorithm for the initiation dose of warfarin based on data from 671 patients. The initiation dose was calculated based on the half-life of S-warfarin for the different CYP2C9 genotypes (maintenance dose = initiation dose/(1-e-^{k*t}). The initiation dose was divided over 3 days to minimize the risk of INR exceeding the therapeutic range. Based on simulation, the initiation dose reduces the time to stable, therapeutic INR for patients with variant CYP2C9 alleles. According to the simulation, the time to stable, therapeutic INR was reduced for *3/*3 from approximately 30 days to 12.5 days, the latter being equal to the time to stable, therapeutic INR for *1/*1. The maintenance dose was calculated with a modification of the algorithm of the International Warfarin Pharmacogenetics Consortium (IWPC). The modified IWPC algorithm was adapted to the mainly Caucasian population in Europe by removing the ethnicity variable. In addition, drugs that induce warfarin metabolism were also omitted from the IWPC algorithm, because very few patients are treated with potent inducers. In addition, their inclusion in the algorithm would require information on the duration of treatment, because it takes at least 2–3 weeks to induce enzymes.

The modified IWPC algorithm is:

 $\sqrt{\text{Predicted maintenance dose (mg/week)}} = [5.6044 - 0.02614 \times \text{age (years)} + 0.0087 \times \text{height (cm)} + 0.0128 \times \text{weight (kg)} - 0.8677 (VKORC1 - 1639 GA) - 1.6974 (VKORC1 - 1639 AA) - 0.5211 (CYP2C9 * 1/*2) - 0.9357 (CYP2C9 * 1/*3) - 1.0616 (CYP2C9*2/*2) - 1.9206 (CYP2C9*2/*3) - 2.3312 (CYP2C9*3/*3) - 0.5503 (amiodarone)].$

The developed EU-PACT algorithm for the initiation dose is:

MD + x (day 1), MD + 2x/3 (day 2), MD + x/3 (day 3), in which:

 $x = MD^{*}[1/(1-e^{-k^{*}24})-1-e^{-k^{*}24}-e^{-k^{*}48}]/[1/3+2/3^{*}e^{-k^{*}24}+e^{-k^{*}48}]$

MD = maintenance dose, k = elimination rate constant

*1/*1: k = 0.0189

*1/*2: k = 0.0158

- *1/*3: k = 0.0132
- *2/*2: k = 0.0130
- *2/*3: k = 0.009
- *3/*3: k = 0.0075
- Zambon CF et al. VKORC1, CYP2C9 and CYP4F2 genetic-based algorithm for warfarin dosing: an Italian retrospective study. Pharmacogenomics 2011;12:15-25. PubMed PMID: 21174619.

An algorithm for the maintenance dose of warfarin was developed based on data from 274 patients. The algorithm was validated in a separate set of 91 patients. The algorithm explained 56-65% of dose variation, which was comparable to the performance of the algorithm of the International Warfarin Pharmacogenetics Consortium (57-63% of dose variation) in these patient groups.

The algorithm is:

 $\sqrt{\text{maintenance dose (mg/week)}} = 7.39764 - 0.02734 x age (years) + 1.06287 x BSA (m²) - 1.04468 (VKOR-C1 -1639 GA) - 2.12117 (VKORC1 -1639 AA) - 0.78983 (CYP2C9*1*2) - 1.17138 (CYP2C9*1*3) - 1.81292 (CYP2C9*2*2, *2*3 or *3*3) - 0.46723 (CYP4F2*1*3) - 0.71528 (CYP4F2*1*1) BSA = body surface area$

 Wells PS et al. A regression model to predict warfarin dose from clinical variables and polymorphisms in CYP2C9, CYP4F2, and VKORC1: Derivation in a sample with predominantly a history of venous thromboembolism. Thromb Res 2010;125:e259-64. PubMed PMID: 20421126.

An algorithm for the maintenance dose of warfarin was developed based on data from 249 patients. The algorithm explained 58% of the dose variation.

The algorithm is:

Dose = $1.85 - 0.048 \times Age$ (in years) + $0.041 \times BMI + 0.05 \times Height$ (in cm) - 0.73 (Less Exercise) - 1.13 (2C9*2 Hetero) - 2.09 (2C9*2 Homo) - 1.51 (2C9*3 Hetero) - 1.43 (VKORC1 - 1639 GA) - 2.86 (VKORC1 - 1639 AA) - 1.33 (4F2 CC) - 1.24 (4F2 CT) - 1.46 (Angiotensin II Receptor Antagonist) - 0.84 (β -Blocker). Less exercise means that a patient's self-rated physical activity level is less than or much less than those of a similar age.

In the investigated patient population ACE inhibitors included losartan and candesartan and β -blockers included metoprolol, atenolol and bisaprolol.

- Lenzini P et al. Integration of genetic, clinical, and INR data to refine warfarin dosing. Clin Pharmacol Ther 2010;87:572-8. PubMed PMID: 20375999.

An algorithm for the warfarin dose after day 4-5 of treatment was developed based on data from 969 patients. The algorithm was validated in a separate set of 616 patients. The algorithm explained 42-63% of dose variation and performed better than an algorithm without genotypes (26-48% of dose variation). The algorithm is:

 $\begin{array}{l} \mbox{Maintenance dose (mg/week) = EXP [3.10894 - 0.00767 \times Age (in years) - 0.51611 \times ln(INR) - 0.23032 \times VKORC1-1639 G>A - 0.14745 \times CYP2C9^{*2} - 0.3077 \times CYP2C9^{*3} + 0.24597 \times BSA + 0.26729 \times Target INR - 0.09644 (African Origin) - 0.2059 (Stroke) - 0.11216 (Diabetes) - 0.1035 (Amiodarone Use) - 0.19275 (Fluvastatin Use) + 0.0169 \times Dose_2 + 0.02018 \times Dose_3 + 0.01065 \times Dose_4]. \end{array}$

 International Warfarin Pharmacogenetics Consortium. Estimation of the warfarin dose with clinical and pharmacogenetic data. N Engl J Med 2009;360:753-64. PubMed PMID: 19228618.
An algorithm for the maintenance dose of warfarin was developed based on data from 4043 patients. The

An algorithm for the maintenance dose of warfarin was developed based on data from 4043 patients. The algorithm was validated in a separate set of 1009 patients. The algorithm explained 43-47% of dose variation. The International Warfarin Pharmacogenetics Consortium (IWPC) algorithm is:

√ maintenance dose (mg/week) = 5.6044 - 0.2614 x Age (in decades) + 0.0087 x Height (in cm) + 0.0128 x Weight (in kg) - 0.8677 (VKORC1 -1639 A/G) - 1.6974 (VKORC1 -1639 A/A) - 0.4854 (VKORC1 genotype unknown) - 0.5211 (CYP2C9 *1/*2) - 0.9357 (CYP2C9 *1/*3) - 1.0616 (CYP2C9 *2/*2) - 1.9206 (CYP2C9 *2/*3) - 2.3312 (CYP2C9 *3/*3) - 0.2188 (CYP2C9 genotype unknown) - 0.1092 (Asian race) - 0.2760 (Black or African American) - 0.1032 (Missing or Mixed race) + 1.1816 (Enzyme inducer) - 0.5503 (Amiodarone) Use of an enzyme inducer means use of carbamazepine, phenytoin, rifampin or rifampicin.

- Wadelius M et al. The largest prospective warfarin-treated cohort supports genetic forecasting. Blood 2009;113:784-92. PubMed PMID: 18574025.

An algorithm for the maintenance dose of warfarin was developed based on data from 1523 patients. The algorithm was validated in a separate set of 181 patients. The algorithm explained 53-59% of dose variation. Body weight and height were not available in the cohort. Instead of these parameters sex is included in the algorithm as a substitute. In addition, drugs that decrease the effect of warfarin are not included in the algorithm, because too few were present in the cohort to get reliable results. The Swedish Warfarin Genetics cohort (WARG) algorithm is:

 $\sqrt{\text{maintenance dose (mg/week)}} = 9.46832 - 0.90112 (VKORC1 - 1639 A/G) - 2.01863 (VKORC1 - 1639 A/A) - 0.50836 (CYP2C9 *1/*2) - 0.97546 (CYP2C9 *1/*3) - 1.10204 (CYP2C9 *2/*2) - 1.74761 (CYP2C9 *2/*3) - 3.40061 (CYP2C9 *3/*3) - 0.03686 x Age (in years) - 0.27698 (Female sex) - 0.06992 x number of drugs that increase INR.$

- Gage BF et al. Use of pharmacogenetic and clinical factors to predict the therapeutic dose of warfarin. Clin Pharmacol Ther 2008;84:326-31. PubMed PMID: 18305455.

An algorithm for the maintenance dose of warfarin was developed based on data from 1015 patients. The algorithm was validated in a separate set of 292 patients. The algorithm explained 53-54% of dose variation (31% in African Americans).

The Warfarin Dose Refinement Collaboration algorithm is:

warfarin dose (mg/day) = exp [0.9751 - 0.3238 × VKOR3673G>A + 0.4317 × BSA - 0.4008 × CYP2C9*3-0.00745 × age - 0.2066 × CYP2C9*2 + 0.2029 × target INR - 0.2538 (amiodarone) + 0.0922 (smoker) -0.0901 (African-American race) + 0.0664 (DVT/PE)]

DVT/PE = deep venous thrombosis or pulmonary embolism

- Sconce EA et al. The impact of CYP2C9 and VKORC1 genetic polymorphism and patient characteristics upon warfarin dose requirements: proposal for a new dosing regimen. Blood 2005;106:2329-33. PubMed PMID: 15947090.

An algorithm for the maintenance dose of warfarin was developed based on data from 297 patients. The algorithm was validated in a separate set of 38 patients. The algorithm explained 54% of dose variation. The algorithm is:

 $\sqrt{\text{Dose}} = 0.628 - 0.0135 \text{ x}$ Age (in years) - 0.240 x CYP*2 - 0.370 x CYP*3 - 0.241 (VKORC1 - 1639 GG) - 0.482 (VKORC1 - 1639 GA) - 0.723 (VKORC1 - 1639 AA) + 0.0162 x Height (in cm).

- Cost effectiveness:

A cost effectiveness analysis in Thai patients was not included, because it does not add enough information about the cost effectiveness in a mainly Caucasian population.

QALY = quality adjusted life year

 Verhoef TI et al. Cost-effectiveness of pharmacogenetic-guided dosing of warfarin in the United Kingdom and Sweden. Pharmacogenomics J 2016 Jun 7. [Epub ahead of print] PubMed PMID: 27272045. For patients with atrial fibrillation from the UK and Sweden with mean ages of respectively 70.9 and 72.5 years, genotype guided warfarin therapy was more cost effective than standard care. The costs were £ 6,702 and 253,848 Swedish Kronor (SEK) per QALY gained, which is less than the thresholds of £ 20,000 and 500,000 SEK per QALY gained. The Swedish threshold of 500,000 SEK is approximately £ 40,000. In 93% of the simulations in the United Kingdom and 67% of the simulations in Sweden, the costs were lower than the thresholds.

Lifelong medical costs were calculated. The calculations were based on a price of INR monitoring and visit to an anticoagulation clinic of £ 24.20 and 221 SEK, a price of warfarin of £ 3.20 and 45 SEK per month, a price of aspirin of £ 1.72 and 21 SEK per month, and costs for genotyping of £ 35.03 and 440 SEK. The percentage time within different INR ranges (<2.0, 2.0–3.0, 3.0–5.0 and >5.0) was derived from the EU-PACT trial (Pirmohamed M et al. A randomized trial of genotype-guided dosing of warfarin. N Engl J Med 2013;369: 2294-303). The risks of adverse events associated with each of the four INR ranges were derived from a meta-analysis of 19 randomized trials and observational studies of coumarin anticoagulants (Oake N et al. Anticoagulation intensity and outcomes among patients prescribed oral anticoagulant therapy: a systematic review and meta-analysis. CMAJ 2008; 179: 235–244). Thromboembolic events consisted mainly of ischaemic strokes, but 28% were assumed to be transient ischaemic attacks. Patients with a stroke were assumed to have a 10% chance of dying and a 47% chance of disability, while patients with a transient ischaemic attack were assumed to fully recover. The majority of haemorrhagic events (80%) were assumed to be extracranial haemorrhage. The risk that an intracranial haemorrhage would result in permanent disability was assumed to be 50% and the chance that it would be fatal 45%; these values were assumed to be zero for an extra-cranial haemorrhage. Patients were assumed to switch to aspirin after an intracranial haemorrhage. Event rates after 3 months were assumed to be the same in both types of warfarin therapy. The number of INR measurements in the first three months was derived from the EU-PACT trial. The authors assumed one measurement per month thereafter.

Pharmacogenetic-guided dosing was cost-effective if genotyping costs would be no higher than £86 in the United Kingdom (given a cost-effectiveness threshold of £ 20,000 per QALY gained) or 809 SEK (approximately £64) in Sweden (given a threshold of 500 000 SEK).

You JH. Universal versus genotype-guided use of direct oral anticoagulants in atrial fibrillation patients: a decision analysis. Pharmacogenomics 2015;16:1089-100.PubMed PMID: 26230572. For 65-year-old newly diagnosed atrial fibrillation patients with a high risk for stroke, a genotype guided therapy was more cost effective than direct oral anticoagulants for all patients (costs were 314,129 USD less per

QALY gained, which is higher than the threshold of 50,000 USD/QALY). Genotype guided therapy consisted of warfarin for patients with normal warfarin sensitivity and a direct oral anticoagulant for patients with a geno-type leading to high warfarin sensitivity (CYP2C9 *2 or *3 variants or VKORC1 -1639 A/A) or low warfarin sensitivity (VKORC1 -1639 G/G in combination with CYP2C9 *1/*1).

Medical costs were calculated for a period of 35 years. For the genotype guided therapy the calculated costs were 124,568 USD and the calculated QALYs 10.6087. The calculation was based on a price of warfarin management (anticoagulation care with INR monitored at least monthly) of USD 34 per month, a price of warfarin (dosage to be determined by the International Warfarin Pharmacogenetics Consortium (IWPC) algorithm) of USD 10.5 per month, a price of direct oral anticoagulants (dabigatran 150 mg twice daily, rivaroxaban 20 mg daily or apixaban 5 mg twice daily) of USD 173 per month, and genotyping costs of USD 80. Risk for clinical events and costs of genotyping were retrieved from literature. In the model, patients who survived a major haemorrhagic event would stop the current anticoagulation therapy and start on aspirin alone. Patient who survived a major thromboembolic event while receiving a direct oral anticoagulant would resume the initial anticoagulation therapy. Those who experienced a major thromboembolic event on warfarin would change to a direct oral anticoagulant. Out-of-range INR in patients receiving warfarin was defined as <1.8 or >3.2. A focused warfarin care system, leading to 81% of time within the therapeutic range was assumed.

Universal use of direct oral anticoagulants would become cost-effective if the monthly drug cost of direct oral anticoagulants was less than USD 30 (lower than the monthly drug cost and management cost of warfarin of USD 40) or if time in the therapeutic range of warfarin therapy was less than 67.8%. The two-way sensitivity analysis on these two variables demonstrated that if the time in the therapeutic range of warfarin was similar to the average anticoagulation control reported in clinical trials of direct oral anticoagulants versus warfarin (60% of time in the therapeutic range), the genotype guided therapy would remain the preferred strategy when direct oral anticoagulants cost more than USD 250 per month. When the monthly cost of direct oral anticoagulants declined to USD 30, a high percentage of time in the therapeutic range (81%) of warfarin should be achieved in order for the genotype guided therapy to be the preferred option. Extended sensitivity analysis on prevalence of normal warfarin sensitivity showed genotype guided therapy to be the preferred strategy in ethnic groups with prevalence of normal warfarin sensitivity >0.56%.

Pink J et al. Cost-effectiveness of pharmacogenetics-guided warfarin therapy vs. alternative anticoagulation in atrial fibrillation. Clin Pharmacol Ther 2014;95:199-207. PubMed PMID: 24067746.

For the UK population of atrial fibrillation patients, apixaban was more cost effective than genotype guided warfarin therapy (costs were £ 19,858 per QALY gained, which is lower than the threshold of £ 20,000-30,000/QALY). Genotype guided warfarin therapy was more cost effective than not genotype guided warfarin therapy (costs were £ 13,226 per QALY gained). For both therapies, the initial warfarin doses were fixed (10 mg on day 1, 10 mg on day 2 and 5 mg on day 3) and IWPC algorithms were used. Neither dabigatran nor rivaroxaban were cost-effective options.

Lifelong medical costs were calculated. For the genotype guided therapy the calculated costs were £ 5,921 and the calculated QALYs 5.724. The calculation was based on a price of warfarin monitoring of £ 198.39 per year, a price of warfarin of £ 41.23 per year, a price of dabigatran (150 mg twice daily) of £ 919.80 per year, a price of rivaroxaban (20 mg daily) of £ 766.50 per year, a price of apixaban (5 mg twice daily) of £ 802.25 per year, a price of aspirin of £ 7.39 per year, and genotyping costs of £ 20.00. Drug costs were taken from the British National Formulary. Risk for clinical events were calculated from an indirect comparison of the trials of warfarin versus the direct oral anticoagulants (RE-LY, ROCKET-AF and ARISTOTLE). As indicated by You 2015, average anticoagulation control with warfarin in these trials is relatively low (60% of time in the therapeutic range). Event rates for genotype guided versus not genotype guided warfarin therapy were derived from literature. Event rates after 3 months were assumed to be the same in both types of warfarin therapy. In the model, patients who discontinued dabigatran, rivaroxaban, or apixaban because of a bleed or who discontinued warfarin for any reason were assumed to be switched to aspirin. Other discontinuing patients were switched to warfarin.

 Nshimyumukiza L et al. Dabigatran versus warfarin under standard or pharmacogenetic-guided management for the prevention of stroke and systemic thromboembolism in patients with atrial fibrillation: a cost/utility analysis using an analytic decision model. Thromb J 2013;11:14. PubMed PMID: 23866305.
For newly diagnosed atrial fibrillation patients with a mean age of 64 years, who never had a previous stroke, genotype guided warfarin therapy was less cost effective than standard warfarin therapy (costs were CAD\$ (Canadian dollar) 54,118 per QALY gained, which is higher than the threshold of CAD\$ 50,000 per QALY gained). Dabigatran 150 mg twice daily was more cost effective than standard warfarin therapy (costs were CAD\$ 4,765 per QALY gained).

Medical costs were calculated for the first 5 years of therapy. For the genotype guided therapy the calculated costs were CAD\$ 7,749 and the calculated QALYs 3.5453. The calculation was based on a price of INR monitoring in the first year of CAD\$ 8.06 per month for standard warfarin therapy and CAD\$ 5 per month for genotype guided warfarin therapy, a price of INR monitoring in subsequent years of CAD\$ 4.03 per month, a price of warfarin 5 mg/day of CAD\$ 0.074 per day, a price of dabigatran of CAD\$ 3.20 per day, and genotyping costs of CAD\$ 615. For the standard warfarin therapy, the time spent in each INR category (below, within or above the therapeutic range) was based on the results of the RE-LY clinical trial comparing dabigatran and warfarin (Connolly 2009), while for the genotype guided therapy with standard therapy (Anderson JL et al. Randomized trial of genotype-guided versus standard warfarin dosing in patients initiating oral anticoagulation. Circulation 2007;116:2563-70). This means that the data for standard warfarin therapy and the relative effect of genotype guided warfarin therapy were derived from different trials and patient groups. In the RE-LY trial, patients from 44 different countries participated. The Couma-Gen trial studied only patients from the United States. It was assumed that after one year 100% of individuals, whatever the warfarin group they belong to, had reached a stable maintenance dose.

Genotype guided warfarin therapy would be more cost effective than standard warfarin therapy and dabigatran, if it would change the average patient time in the therapeutic range in the first year from 66.6% to 76.8%, i.e. an increase with 20%. In this case, the costs per QALY gained for genotype guided warfarin therapy would be CAD\$ 3,250. In the Couma-Gen trial, genotype guided therapy increased the time in the therapeutic range with 7.3%.

With a threshold of CAD\$ 50,000 per QALY gained, dabigatran was more cost-effective than standard warfarin therapy in 99.75% of simulations.

Patrick AR et al. Cost-effectiveness of genotype-guided warfarin dosing for patients with atrial fibrillation. Circ Cardiovasc Qual Outcomes 2009;2:429-36. PubMed PMID: 20031873.

For 70-year-old patients with newly-diagnosed atrial fibrillation, genotype guided warfarin therapy was more cost effective than usual care only if it reduces out-of-range international normalized ratio values by more than 5 to 9 percentage points (costs respectively less than 100,000 and 50,000 USD per QALY gained). The midpoint of the result of 2 published randomized controlled trials of genetically-guided dosing was 8.5% more time spent in the therapeutic range.

Medical costs were calculated for the life expectancy of 11.42 years. The calculations were based on a price of INR monitoring (assumed: 8 INR tests during the first month of treatment and 1 in each subsequent month) of USD 29, a price of warfarin (average dose of 5 mg/day) of USD 71 per 3 months, and costs for genotyping and blood sample collection of USD 575. Risks for clinical events were retrieved from literature. Event rates after 3 months were assumed to be the same in both types of warfarin therapy.

Variation of input data resulted in 42% of scenarios being cost effective at a threshold of 50,000 USD/QALY and 70% at a threshold of 100,000 USD/QALY. Genotyping was more cost-effective in younger patients, with the costs increasing from USD 29,000 per QALY in 50-year-old patients to USD 120,000 per QALY in 85-year-old patients. Test costs and assumptions about the rate of major bleeding during treatment initiation also influenced the results, because this parameter affected the number of bleeding events that could be averted through genotyping. In addition, the amount of patient time shifted from high INR to therapeutic INR influenced the cost effectiveness.

Meckley LM et al. A policy model to evaluate the benefits, risks and costs of warfarin pharmacogenomics testing. Pharmacoeconomics 2010;28:61-74. PubMed PMID: 20014877.

For 65-year-old atrial fibrillation patients starting with warfarin, genotype guided therapy was less cost effective than usual care (costs were 60,725 USD more per QALY gained, which is higher than the threshold of 50,000 USD/QALY). Varying of the input parameters resulted in 46% of simulations with additional costs for genotype guided therapy of less than 50,000 USD/QALY.

Lifelong medical costs were calculated. For the genotype guided therapy the calculated costs were 46,970 USD and the calculated QALYs 12.0851. The calculation was based on a price of warfarin therapy of USD 63 per year and genotyping costs of USD 175. Risk for clinical events were mostly based on INR differences observed in the Couma-Gen trial in which the use of a pharmacogenetic maintenance dose algorithm to select initial warfarin dose was compared with standard care via an anticoagulation specialist pharmacist (n = 200). The effect of CYP2C9 on bleeding risk was retrieved from the meta-analysis of Sanderson 2005. Event rates after 6 months were assumed to be the same in both types of warfarin therapy.

Results were most sensitive to the cost of genotyping and the effect of genotyping. If the genotyping test costs less than USD 13, then pharmacogenomic testing would be a cost-saving strategy. If data from the Caraco trial (n = 283) were used instead of data from the Couma-Gen trial, or pharmacogenomic initiation further reduced bleeds in the CYP2C9 variant patients, pharmacogenomic warfarin initiation would be cost

saving. Changes to some key structural assumptions increased the additional costs to more than USD 100,000 per QALY.

The costs and benefits of genotype guided therapy were not evenly distributed between the different genotypes. For patients that were both VKORC1 and CYP2C9 wild-type, the costs increased with USD 13,500/ QALY due to a reduction in bleeds (despite higher doses), thromboembolism and deaths. For CYP2C9 variant patients the reduction in bleeds was offset by the increased number of thromboembolic events, resulting in reduced QALYs. These results imply that CYP2C9 variant patients may be more challenging to manage, even once their genetic status is known. This is potentially the result of a significantly slower therapeutic response in these patients due to the decreased rate of drug metabolism.

You JH et al. Potential clinical and economic outcomes of CYP2C9 and VKORC1 genotype-guided dosing in patients starting warfarin therapy. Clin Pharmacol Ther 2009;86:540-7. PubMed PMID: 19571807. For patients starting with warfarin, genotype guided therapy was less cost effective than usual care (costs were 347,059 USD more per QALY gained, which is higher than the threshold of 50,000 USD/QALY). Varying of the input parameters resulted in 48% of simulations with additional costs for genotype guided therapy of less than 50,000 USD/QALY.

Medical costs for the first year of treatment were calculated. The calculation was based on a price of anticoagulation clinic care of USD 303 per year and genotyping costs of USD 200. Risk for clinical events were based on INR differences observed in the Couma-Gen trial in which the use of a pharmacogenetic maintenance dose algorithm to select initial warfarin dose was compared with standard care via an anticoagulation specialist pharmacist (n = 200).

Results were most sensitive to the cost of genotyping, the relative percentage reduction in out-of-range INRs in the genotype guided dosing group, and the percentage of out-of-range INRs in the standard dosing group. Eckman MH et al. Cost-effectiveness of using pharmacogenetic information in warfarin dosing for patients

Extrain wire et al. Cost-effectiveness of using pharmacogenetic mormation in warrant dosing for patients with nonvalvular atrial fibrillation. Ann Intern Med 2009;150:73-83. PubMed PMID: 19153410. For male patients aged 69 years with nonvalvular atrial fibrillation at average risk for stroke and without specific risk factors for bleeding, genotype guided dosing was less cost effective than usual care (costs were 171,800 USD more per QALY gained, which is higher than the threshold of 50,000 USD/QALY). Varying of the input parameters resulted in 10% of simulations with additional costs for genotype guided therapy of less than 50,000 USD/QALY. For genetic testing to cost less than USD 50,000 per QALY, it would have to be restricted to patients at high risk for haemorrhage or meet the following criteria: prevent greater than 32% of major bleeding events, be available within 24 hours, and cost less than \$200.

Life-long medical costs were calculated. For the genotype guided therapy the calculated costs were 19,684 USD and the calculated QALYs 7.5780. The calculation was based on a price of warfarin of USD 36.99 per month, genotyping costs of USD 400 and a 3-day delay in initiating warfarin therapy due to genotyping. The relative risk for major bleeding in the genotype guided versus standard warfarin therapy (0.68; 95% CI: 0.22-2.06) was calculated from a meta-analysis of the 3 trials comparing both types of therapy (n_{total} = 429). Major bleeding rates after 1 month were assumed to be the same in both types of warfarin therapy.

Results were most sensitive to the cost of genotyping and the delay in warfarin therapy due to genotyping. If the cost of genotyping was less than USD 140, genotype guided dosing would be cost effective (additional costs less than USD 50,000/QALY). If the cost of genotyping was less than USD 40, genotype guided dosing would be cost saving. If there were no delay in initiating treatment, the additional costs would be USD 116,000/QALY. In the scenario where in-hospital genotyping would be possible, with cost of genotyping of USD 200 and the results available in 24 hours, allowing immediate initiation of warfarin therapy, the additional costs of genotype-guided dosing would be USD 51,000/QALY.

Existing guideline:

Johnson JA et al. Clinical Pharmacogenetics Implementation Consortium Guidelines for CYP2C9 and VKORC1 genotypes and warfarin dosing. Clin Pharmacol Ther 2011;90:625-9. PubMed PMID: 21900891. CPIC uses the same definition for the VKORC1 genotypes as we do. They also state that this genotype can both

CPIC uses the same definition for the VKORC1 genotypes as we do. They also state that this genotype can both be reported by the -1639G>A polymorphism as by the linked 1173C>T polymorphism. However, CPIC itself uses the -1639G>A polymorphism for reporting. CPIC also states that inclusion of other common VKORC1 SNP's in dosing algorithms does not further improve warfarin dose prediction (Limdi 2010 and Gage 2008).

CPIC classifies the recommendations for warfarin dosing based on genotype in this guideline as strong. However, CPIC indicates that there are limited prospective data from randomized trials on the use of genetic information to guide warfarin dosing, and the impact on clinical outcomes is unknown, although several such studies were ongoing in 2011. (Note: Two of these studies were published in 2013 and are included in the meta-analyses of Liao 2015, Xu 2014, Franchini 2014 and Stergiopoulos 2014.)

CPIC indicates that dosing algorithms using genetics outperform nongenetic clinical algorithms and fixed-dose approaches in dose prediction (Gage 2008 and International Warfarin Pharmacogenetics Consortium 2009). They also predict the warfarin dose better than the FDA-approved warfarin label table (Finkelman 2011). CPIC indicates that two algorithms perform well in estimating stable warfarin dose across different ethnic populations (Gage 2008 and International Warfarin Pharmacogenetics Consortium 2009); these were created using more than 5,000 subjects.

The recommendation is to use pharmacogenetic algorithm based dosing when possible, although if electronic means for such dosing are not available, the table based dosing approaches are suggested.

CPIC indicates that the algorithms available on http://www.warfarindosing.org are the best way to estimate the anticipated stable dose of warfarin. The algorithms on this website are from The Warfarin Dose Refinement Collaboration (Gage 2008) and International Warfarin Pharmacogenetics Consortium (International Warfarin Pharma-

cogenetics Consortium 2009). They compute the anticipated stable daily warfarin dose to one decimal, and the clinician must then prescribe a regimen (e.g. an estimate of 4.3 mg/day might be given as 4 mg daily except 5 mg two days per week). When using the FDA-approved warfarin label table, the specific dose selected within the given range should take into account other important variables, such as patient age, body size, and interacting drugs. (Note: the warfarin table of the FDA is included in the last row of the table in this risk analysis). The recommendations above are still the same after the last update on 19-6-2014 on the PharmGKB-site.

Date of the literature search: 29 June 2016.

	Genotype	Code	Gene-drug interaction	Action	Date
Project group decision	GA	4 A	yes	no	24 August 2016
	AA	4 A	yes	yes	

Mechanism:

Coumarins exert their anticoagulant effect by inhibiting the enzyme activity of the vitamin K 2,3-epoxide reductase complex, subunit 1 (VKORC1). Variations in the VKORC1 gene can result in a decreased expression of the VKORC1 protein. As a consequence, lower doses of coumarins are required for inhibition of this protein.

VKORC1 converts reduced vitamin K (vitamin K 2,3-epoxide) back into the active oxidized form (vitamin K hydroquinone). Vitamin K is an essential cofactor for the carboxylation of glutamic acid residues of blood coagulation factors II, VII, IX and X and the anti-coagulation proteins C, S and Z. For this reason, inhibition of VKORC1 diminishes coagulation.