

CYP2C9: siponimod

7160 to 7166

*1 = no CYP2C9 gene variant, normal activity, *2 = CYP2C9 gene variant with decreased activity, *3 = CYP2C9 gene variant with strongly decreased activity, AUC = area under the concentration-time curve, AUC_{0-last} = AUC from time zero to the time of the last quantifiable concentration, Cl_{or} = oral clearance, ECG = electrocardiogram, IM = IM other = intermediate metaboliser, other genotype (decreased CYP2C9 enzyme activity due to the presence of one gene variant with decreased activity other than *2 or *3), NM = normal metaboliser (*1/*1) (normal CYP2C9 enzyme activity), NS = non-significant, PM = PM other = poor metaboliser, other genotype (strongly decreased CYP2C9 enzyme activity due to the presence of two gene variants with decreased activity, of which at least one other than *2 or *3), S = significant, $t_{1/2}$ = half-life

Disclaimer: The Pharmacogenetics Working Group of the KNMP formulates the optimal recommendations for each phenotype group based on the available evidence. If this optimal recommendation cannot be followed due to practical restrictions, e.g. therapeutic drug monitoring or a lower dose is not available, then the health care professional should consider the next best option.

Brief summary and justification of choices:

Siponimod is primarily metabolised by CYP2C9, and to a lesser extent by CYP3A4, to hydroxysiponimod. This metabolite is then glucuronidated. Both metabolites have a very limited pharmacological activity (hydroxysiponimod 470-fold less and siponimodglucuronide 10,000-fold less than siponimod).

There are no studies investigating clinical effects of gene variants leading to a reduced CYP2C9 activity other than two studies in volunteers receiving either a lower than normal dose for a maximum of 3 days or receiving a single dose. A study found a numerical increase in AUC of siponimod for *2/*3 and *3/*3 compared to *1/*1 after a single dose (2.0-fold and 3.8-fold respectively). Another study found a numerical increase in AUC of siponimod for *1/*2 after a single dose (1.3-fold). The SmPC reported calculated numerical increases in AUC of siponimod compared to *1/*1 of 1.0-fold for *1/*2, 1.6-fold for *1/*3, 1.3 fold for *2/*2, 1.9-fold for *2/*3 and 2.8-fold for *3/*3, using modelling with *in vitro* data and the data from the two studies.

Based on the size of the effect for *3/*3 in the small study, the KNMP concludes that there is enough evidence for a gene-drug interaction. In general, the KNMP only provides therapeutic recommendations if clinical effects have been found or if the drug has a narrow therapeutic range. For siponimod, no clinical effects have been found and there are no indications for a narrow therapeutic range. As mentioned in Gardin 2019 Clin Pharmacokinet, siponimod doses up to 20 mg/day (10 times the normal dose of 2 mg/day) were well tolerated for a period of 28 days. However, the risk for bradycardia was diminished by starting with a low dose (0.25 mg/day). In addition, siponimod decreases the lymphocyte count and thus increases infection risk, suggesting a high likelihood for a negative long term effect of overdosing. Finally, long term treatment with other immune-modulating drugs for multiple sclerosis has been associated with progressive multifocal leukoencephalopathy, a life-threating adverse event caused by activation of the JC virus in the brain. Thus, although there is not enough evidence for pharmacotherapeutic recommendations for siponimod, there is not enough evidence to reject them either. For this reason, the KNMP decided to adopt the pharmacotherapeutic recommendations in the SmPC of siponimod (i.e. yes/no-interactions for *1/*2 and *2/*2, and yes/yes-interactions for *1/*3, *2/*3 and *3/*3). The pharmacotherapeutic recommendation for *1/*3 and *2/*3 is to use halve of the normal maintenance dose and take into account an increased effect of moderate CYP3A4 inducers. The pharmacotherapeutic recommendation for *3/*3 is to avoid siponimod. There are no data for IM and PM, the genotypes involving one or two alleles with reduced activity other than *2 and *3. Because the *6 allele has no activity, these phenotypes include genotypes with an effect size equal to or larger than *1/*3 and *3/*3. Therefore, for these phenotypes the same therapeutic recommendations are given as for *1/*3 and *3/*3, respectively (yes/yes-interactions).

You can find an overview of the observed kinetic and clinical effects in the background information text of the genedrug interactions in the KNMP Kennisbank. You might also have access to this background information text via your pharmacy or physician electronic decision support system.

Recommendation concerning pre-emptive genotyping, including justification of choices:

Due to the absence of publications of multiple dose studies using the recommended therapeutic dose or case reports with patients with a CYP2C9 genotype leading to reduced CYP2C9 activity in medical journals, and thus the absence of evidence of an increase in adverse events code \geq D (grade \geq 3) in these patients, the clinical implication of the genedrug interaction scores only 2 out of the maximum of 10 points (with pre-emptive genotyping considered to be poten-

tially beneficial for scores ranging from 0 to 2 points) (see also the clinical implication score tables at the end of this risk analysis).

However, there is not enough evidence to reject the warnings and recommendations in the SmPC. In addition, the Clinical Implication Score is mainly (for 80%) based on studies published in medical journals and therefore not suited to determine the clinical implication for gene-drug interactions for which data are predominantly provided by pre-registration studies. For these reasons, the KNMP decided to ignore the Clinical Implication Score and adopt the genotyping recommendation in the SmPC. The SmPC indicates that genotyping must be performed before starting siponimod to guide drug and dose selection. This would amount to genotyping being essential for drug safety according to the nomenclature of the KNMP Pharmacogenetics Working Group.

The table below follows the KNMP definition for NM, PM and IM, unless stated otherwise. The definition of NM, PM and IM used in the table below may therefore differ from the definition used by the authors in the article.

Source	Code	Effect				Comments
ref. 1	3	30 healthy volunteers, selecte		2C9 genotype,	received a	Author's conclu-
Gardin A et al.		single dose of siponimod 0.25				sion:
Siponimod		Co-medication and herbal an	d dietary supple	ements were ex	cluded.	"Geometric mean
pharmacokine-						AUCinf, T1/2, and
tics, safety, and		Genotyping:				median T _{max}
tolerability in		- 17x *1/*2				were higher while
combination		- 13x *1/*3				systemic clearan-
with the potent						ce was lower in
CYP3A4 inhibi-		Results:	0 " 00/0	<u></u>	•	cohort 2 (CYP-
tor itraconazole		Results compared to *1/*1 in				2C9 *1*3) than
in healthy sub-			*1/*3	*1/*2	value for	cohort 1 (CYP-
jects with diffe- rent CYP2C9					*1/*1 in	2C9 *1*2)."
genotypes.					Gardin 2019,	
Eur J Clin Phar-					Clin	
macol					Pharma-	
2019;75:1565-					cokinet	
74.		adverse events	No major diffe	erences were ol		
PubMed PMID:				oring data betw		
31392364.			and *1/*3.	oning data betw		
				lymphocyte cou	unt reduc-	
				istent with the r		
				mphocyte coun	0	
				revious clinical		
			(with not for th	neir CYP2C9 ge	enotype	
			selected subje			
				s experienced s		
				ts and no death		AUC siponimod
				clinically releva		compared to
				erved in clinical	l labora-	*1/*1 in another
	*1/*2:	ALIC singerimed	tory variables		70.5	study: *1/*2: 110%
	17 Z. AA	AUC siponimod	x 1.41 (NS)	x 1.10 (NS)	h.ng/ml	*1/*3: 141%
	AA	AUC _{0-last} hydroxysiponi-	x 0.58 (NS)	x 0.98 (NS)	1.09	1/ 3. 141 /0
	*1/*3:	mod	x 0.00 (NO)	x 0.00 (NO)	h.ng/ml	
	AA	AUC siponimodglucuroni-	x 0.99 (NS)	x 1.10 (NS)	32.7	
		de			h.ng/ml	
		t _{1/2} siponimod	x 1.46 (NS)	x 0.99 (NS)	28.1 h	
		t _{1/2} hydroxysiponimod	x 1.48 (NS)	x 0.91 (NS)	37.9 h	1
		t _{1/2} siponimodglucuronide	x 1.29 (NS)	x 1.02 (NS)	32.9 h	
		Clor siponimod	x 0.74 (NS)	x 0.96 (NS)	3.6 L/h	
		Significance of the differenc				
		determined.				
		Significance of the differenc		1/*3 compared	to *1/*1 in	
		other studies was not deterr	nined.			
		Note: Genotyping was for *2			portant	
		gene variants in this population	on from the USA	۹.		

ref. 2 Gardin A et al. Effect of fluco- nazole coadmi- nistration and CYP2C9 gene- tic polymor- phism on sipo- nimod pharma- cokinetics in healthy sub- jects. Clin Pharmaco- kinet 2019;58:349- 61. PubMed PMID: 30088221.	3	24 healthy volunteers, selecters single dose of siponimod 0.25 *1/*1 genotype were matcheor teers with a variant genotype, with a variant genotype received day 1 and 2, 0.5 mg on day 3 Co-medication, herbal and diverse excluded. For siponimod, the nimod exposure is dose-prop A sample size of six subjects provide 80% power to detect parameters (Cmax, AUCo-last and level of 0.05, with an assump ance of 25% based on histori group, the 90% confidence in ters ratio was expected to be with 90% coverage probability vitro data) predicted a 4.5-fold exposure in subjects with a *3 Genotyping: - 12x *1/*1 - 6x *2/*3 - 6x *3/*3	5 mg (single dos d by body weigh . In a second stru- ved siponimod f) (multiple dose etary supplement time to steady so ortional and tim per genotype g a 1.5-fold chang nd AUC _{0-∞}) of si tion of an inters cal data. With s terval of the pha- within 72–138% y. The SimCYP d higher (based	se study). Volur it (± 10%) to the udy, the 12 volu- for 3 days (0.25 e study). Ints and smokin state is 6 days, re-independent. roup was estim ge in pharmaco ponimod at a si- ubject coefficie ix completed su armacokinetics 6 of the observe simulations (ba on AUC _∞) sipo	ated to kinetic ignificance nt of vari- ubjects per parame- ed mean, ased on in	Author's conclu- sion: "Changes in siponimod phar- macokinetics, when coadminis- tered with fluco- nazole at steady- state and in sub- jects with diffe- rent CYP2C9 genotypes, indi- cate that the reduced CYP2C9 enzymatic activi- ty does not affect the absorption phase of siponi- mod but prolongs the elimination phase."
		Results: Single dose study: results co	ompared to NM	:		
			*3/*3	*2/*3	value for *1/*1	
		adverse events		volunteers repo	orted at	
				erse event. Hea prevalent adve		
				one adverse ev		
				gle dose or mult		
				nsidered to be p onimod (somno		
				ence of adverse	,	
			did not allow f	for any meaning	gful com-	
				s genotype or p	henotype	
			groups (NS). No deaths or	serious adverse	e events	
			were reported	during the stud	dy, and no	
				inically relevant		
				atory, vital signs ntified. No clinio		
			ficant change	s were observe	d with	AUC siponimod
				dy weight throug	ghout the	compared to *1/*1:
	*2/*3:	AUC siponimod	study. x 3.84 (NS)	x 2.04 (NS)	70.5	*2/*3: 204%
	AA	AUC _{0-last} hydroxysiponi-	-	x 0.61 (NS)	h.ng/ml 1.09	*3/*3: 384%
	*3/*3:	mod	-		h.ng/ml	
	AA	AUC siponimodglucuroni-	x 0.34 (NS)	x 0.88 (NS)	32.7	
		de AUC _{0-24h} siponimod	x 1.35 (NS)	x 1.41 (NS)	h.ng/ml 31.6	4
				, , , , , , , , , , , , , , , , , , ,	h.ng/ml	
		AUC _{0-24h} hydroxysiponi-	x 0 (NS)	x 0.56 (NS)	0.618 b.pg/ml	
		MOD AUC0-24h siponimodglucu-	x 0.09 (NS)	x 0.51 (NS)	h.ng/ml 12.1	1
		ronide		, , , , , , , , , , , , , , , , , , ,	h.ng/ml	
		t _{1/2} siponimod	x 4.48 (NS)	x 1.81 (NS)	28.1 h	
		t _{1/2} hydroxysiponimod	- x 2 02 (NS)	x 2.77 (NS)	37.9 h 32.9 h	
		t _{1/2} siponimodglucuronide	x 2.92 (NS)	x 1.67 (NS)	JZ.9 (1	1

rof 2 continue		
ref. 2, continu- ation	Clor siponimod x 0.25 (NS) x 0.47 (NS) 3.6 L/h	
ation	Significance was not determined.	1
	Multiple dose study: results compared to non-genotype selected	
	healthy volunteers on the same dosing regime in an earlier study:	
	*3/*3 *2/*3	
	adverse events Three (25%) of the 12 volunteers	
	with a variant genotype experien-	
	ced at least one adverse event.	
	Headache was the most prevalent	
	adverse event (8.3%). Only one adverse event in either the single	
	dose or multiple dose study was	
	considered to be possibly related to	
	siponimod (somnolence). The low	
	incidence of adverse events did not	
	allow for any meaningful compari-	
	son across genotype or phenotype groups (NS).	
	No deaths or serious adverse	
	events were reported during the	
	study, and no systematic, clinically	
	relevant alterations of laboratory,	
	vital signs or ECG data were identi-	
	fied. No clinically significant chan-	
	ges were observed with respect to body weight throughout the study.	
	AUC _{0-24h} siponimod at day 3 x 1.7 (NS) x 1.4 (NS)	
	AUC _{0-24h} siponimod at day 3 was 3.5-fold higher for *3/*3 and 2.8-	
	fold higher for *2/*3 than after a single oral dose of siponimod 0.25	
	mg.	
	Significance was not determined.	
	Note: Genotyping was for *2 and *3. These are the most important gene variants in this mixed Australian/French/Jordanese/American	
	volunteer group.	
ref. 3	These documents confirm that Gardin 2019, Eur J Clin Pharmacol and	
Assessment	Gardin 2019, Clin Pharmacokinet were the only studies with humans	
report Mayzent	with a variant genotype used for the pharmacogenetic recommen-	
(siponimod) 14-	dations in the SmPC of siponimod. Thus, recommendation for *2/*2	
11-2019	were only based on <i>in vitro</i> data and modelling, and data for *1/*2 and	
and	*1/*3 were mostly based on <i>in vitro</i> data and modelling. In addition,	
	recommendations are only based on pharmacokinetics, not on clinical	
Huth F et al.	effects.	
Prediction of		
the impact of		
cytochrome P450 2C9		
genotypes on		
the drug-drug		
interaction		
potential of		
siponimod with		
physiologically-		
based pharma- cokinetic mode-		
ling: a com-		
prehensive		
approach for		
drug label		
recommenda-		
tions.		

Clin Pharmacol			
Ther			
2019;106:1113-			
24.			
PubMed PMID:			
31199498.			
ref. 4	0	Dose:	
SmPC Mayzent		Before initiation of treatment, patients must be genotyped for CYP2C9	
(siponimod) 14-		to determine their CYP2C9 metaboliser status.	
08-23.		In patients with a CYP2C9*3*3 genotype, siponimod should not be	
		used.	
		In patients with a CYP2C9*2*3 or *1*3 genotype, the recommended	
		maintenance dose is 1 mg taken once daily (1 x 1 mg or 4 x 0.25 mg). Additional exposure of 0.25 mg on day 5 does not compromise patient	
		safety.	
		The recommended maintenance dose of siponimod in all other CYP-	
		2C9 genotype patients is 2 mg. Mayzent is taken once daily.	
		Contraindications:	
		Patients homozygous for CYP2C9*3 (CYP2C9*3*3) genotype (poor	
		metaboliser).	
		Warnings:	
		Before initiation of treatment with siponimod, patients should be geno-	
		typed for CYP2C9 to determine their CYP2C9 metaboliser status.	
		Patients homozygous for CYP2C9*3 (CYP2C9*3*3 genotype: approxi- mately 0.3 to 0.4% of the population) should not be treated with sipo-	
	*3/*3: A	nimod. Use of siponimod in these patients results in substantially	
	0/ 0. //	elevated siponimod plasma levels. The recommended maintenance	
		dose is 1 mg daily in patients with a CYP2C9*2*3 genotype (1.4-1.7%	
		of the population) and in patients with a *1*3 genotype (9-12% of the	
		population) to avoid increased exposure to siponimod.	
		Drug interactions:	
		The co-administration of fluconazole (moderate CYP2C9/CYP3A4	
		dual inhibitor) 200 mg daily at steady state and a single dose of siponi-	
		mod 4 mg in healthy volunteers with a CYP2C9*1*1 genotype led to a 2-fold increase in the area under the curve (AUC) of siponimod. Ac-	
		cording to evaluation of the drug interaction potential using physiolo-	
		gically based pharmacokinetic (PBPK) modelling, a maximum of a 2-	
		fold increase in the AUC of siponimod is predicted across genotypes	
		with any type of CYP3A4 and CYP2C9 inhibitors except for patients	
	*2/*2: A	with a CYP2C9*2*2 genotype. In CYP2C9*2*2 patients, a 2.7-fold	
		increase in the AUC of siponimod is expected in the presence of	
		moderate CYP2C9/CYP3A4 inhibitors.	
		Because of an expected reduction in siponimod exposure, the appro-	
		priateness and possible benefit of the treatment should be considered	
		when siponimod is combined with moderate CYP3A4 inducers (e.g. modafinil) or strong CYP3A4 inducers in patients with a CYP2C9*1*3	
		or *2*3 genotype. A significant reduction of siponimod exposure (by up	
		to 51%) is expected under these conditions according to evaluation of	
		the drug interaction potential using PBPK modelling.	
		Pharmacodynamics: With continued daily dosing, the lymphocyte	
		count continues to decrease, reaching a nadir median (90% CI) lym-	
	4 A /4 A	phocyte count of approximately 0.560 (0.271-1.08) cells/nL in a typical	
	*1/*2:	CYP2C9*1*1 or *1*2 non-Japanese SPMS patient, corresponding to	
	AA	20-30% of baseline.	
		<u>Pharmacokinetics</u> : CYP2C9 is polymorphic and the genotype influences the fractional	
		contributions of the two oxidative metabolism pathways to overall	
		elimination. PBPK modelling indicates a differential CYP2C9 geno-	
		type-dependent inhibition and induction of CYP3A4 pathways. With	
		decreased CYP2C9 metabolic activity in the respective genotypes, a	
		larger effect of the CYP3A4 perpetrators on siponimod exposure is	
	l		

not A new them		and also to t					T
ref. 4, continu-		anticipated.					
ation		The CYP2C9 g					
		pharmacokineti					
		subjects behav					
		intermediate m	etabolisers ar	nd *2*3 and *3	*3 subjects a	s poor metabo-	
		lisers. Compare	ed to CYP2C9	*1*1 subjects	, individuals v	vith the CYP-	
	*1/*3: A	2C9*2*2, *1*3,					
	*2/*3: A	and 74% small					
	_/ 0	therefore appro					
		*2*2, *1*3, *2*3					
		subjects (see T		jecis, respect	ively, as com		
		•	,	t accurring pa	lumorphiama		
		There are other					
		The pharmacol					
		subjects. Some					
		ciated with dec					
		CYP2C9 *5, *6					
		approximately '				, 2% in Lati-	
		nos/Hispanics a					
		Table CYP2C9 g					
		CYP2C9	Frequency	Estimated	% of CYP-	% exposure	
		genotype	in Cauca-	CL/F (L/h)	2C9*1*1	increase	
			sians		CL/F	versus	
						CYP2C9	
		Normal match -	liaara	I		*1*1	CL sinonimed
		Normal metabo		2422	100		Clor siponimod
		CYP2C9*1*1	62-65 20-24	3.1-3.3	100	-	compared to
		CYP2C9*1*2 Intermediate me		3.1-3.3	99-100		*1/*1:
		CYP2C9*2*2	1-2	2.5-2.6	80	25	*1/*2: 99-100%
		CYP2C9*1*3	9-12	1.9-2.1	62-65	61	*1/*3: 62-65%
		Poor metabolise		1.0-2.1	02-00		*2/*2: 80%
		CYP2C9*2*3	1.4-1.7	1.6-1.8	52-55	91	*2/*3: 52-55%
		CYP2C9*3*3	0.3-0.4	0.9	26	284	*3/*3: 26%
		Physician's Che					
		The Physician's		all contain the	following key	v messages.	
						oor metaboli-	
		sers:	ng tonn saidt	,	0 11 203 p		
			n denotvoina	for CYP2CQ h	efore treatme	ent initiation to	
				mod maintena			
				d via blood or			
				riant alleles fo			
				T) and CYP2			
						s. This genoty-	
						nethod or PCR-	
						please refer to	
			cal laboratory		Siamications	PICASE IEIEI IU	
					ents homozw	gous for CYP-	
		2C9*3*	• •				
				nco doco to 1	ma in nationt		
					ing in patients	s with CYP2C9	
			*1*3 genotyp				
			inmia (includi	ng conduction	defects) duri	ng treatment	
		initiation:					
				h a titration pa		•	
				-	• •	ed to the main-	
				g or 1 mg on a	day 6 based o	on the CYP-	
		2C9 me	etaboliser stat	us.			
ref. 5	0	Dose:					
SmPC Mayzent		Before initiation	of treatment	with Mayzent.	, assess the f	ollowing:	
(siponimod) 10-		Test patients for					
08-23, USA.		An FDA-cleared					
,		ants to direct th					
		After treatment			•		
						-	
		Mayzent is 2 m	y taken orally	unce daily sta	arting on Day	o (patients	
	I	1					1

rof E continu			
ref. 5, continu- ation		with CYP2C9 genotypes *1/*1, *1/*2, or *2/*2). Dosage adjustment is required in patients with a CYP2C9 *1/*3 or *2/*3 genotype. In patients	
ation		with a CYP2C9 *1/*3 or *2/*3 genotype, after treatment titration, the	
		recommended maintenance dosage of Mayzent is 1 mg taken orally	
		once daily starting on Day 5.	
		Contraindications:	
		Patients who have a CYP2C9*3/*3 genotype.	
		Drug interactions:	
		Concomitant use of Mayzent and moderate (e.g., modafinil, efavirenz)	
		or strong CYP3A4 inducers is not recommended for patients with	
		CYP2C9*1/*3 and *2/*3 genotype.	
		Use in specific populations:	
		Before initiation of treatment with Mayzent, test patients to determine	
		CYP2C9 genotype.	
		Mayzent is contraindicated in patients homozygous for CYP2C9*3	
		(i.e., CYP2C9*3/*3 genotype) because of substantially elevated sipo-	
		nimod plasma levels. The *3/*3 genotype is present in approximately	
		0.5% of white patients and 1% of Asian patients, and is less prevalent	
		in other racial/ethnic groups.	
	*1/*3: A	Mayzent dosage adjustment is recommended in patients with CYP- 2C9 *1/*3 or *2/*3 genotype because of an increase in exposure to	
	*2/*3: A	siponimod. The *1/*3 or *2/*3 genotypes are present in 2% to 20% of	
	2/ 3. A	the population depending on ancestry.	
		There are other less frequently occurring polymorphisms in CYP2C9.	
		Some polymorphisms, such as *5, *6, *8, and *11, are associated with	
		decreased or loss of enzyme function. The impact of variants other	
		than *2 and *3 on the pharmacokinetics of siponimod has not been	
		evaluated. It is anticipated that variants that result in loss of CYP2C9	
	IM: A	function (e.g., *6) will have similar effects on siponimod pharmaco-	
	PM: A	kinetics as the *3 variant.	
		Pharmacodynamics: With continued daily dosing, the lymphocyte	
		count continues to decrease, reaching a nadir median (90% CI) lym-	
		phocyte count of approximately 0.560 (0.271-1.08) cells/nL in a typical	
	*1/*2:	CYP2C9*1*1 or *1*2, non-Japanese patient, corresponding to 20 to	
	AA	30% of baseline.	
		Pharmacokinetics:	
		CYP2C9 is polymorphic and the genotype influences the fractional	
		contributions of the two oxidative metabolism pathways to overall elimination. Physiologically based PK modeling indicates a differential	
		CYP2C9 genotype-dependent inhibition and induction of CYP3A4	
		pathways. With decreased CYP2C9 metabolic activity in the respec-	
		tive genotypes, a larger effect of the CYP3A4 perpetrators on siponi-	
		mod exposure is anticipated.	
		Pharmacogenomics:	
		The CYP2C9 genotype has a significant impact on siponimod meta-	
		bolism. After a single dose of 0.25 mg siponimod, AUC _{inf} and AUC _{last}	
		was approximately 2-and 4-fold higher in subjects with the CYP2C9	
		*2/*3 and CYP2C9*3/*3 genotypes, respectively, while there was only	
		a minor increase of C_{max} by 21% and 16%, respectively, compared to	
		normal metabolizers (CYP2C9*1/*1). Mean half-life is prolonged in	Clor siponimod
		CYP2C9*2/*3 and CYP2C9*3/*3 carriers (51 hours and 126 hours,	compared to
		respectively).	*1/*1:
		An apparent systemic clearance (CL/F) of about 3.11 L/h was estimated in CYP2C9 normal metabolizer (CYP2C9*1/*1 and CYP2C9 *1/*2)	*1/*2: appr. 100%
		MS patients after multiple oral administrations of siponimod. Cl/F is	*1/*3: 61%
	*2/*2: A	2.5, 1.9, 1.6, and 0.9 L/h in subjects with the CYP2C9*2/*2, CYP2C9	*2/*2: 80%
	*3/*3: A	*1/*3, CYP2C9*2/*3, and CYP2C9*3/*3 genotypes respectively. The	*2/*3: 51%
		resultant increase in siponimod AUC was approximately 25%, 61%,	*3/*3: 29%
		91%, and 285% higher in CYP2C9*2/*2, CYP2C9*1/*3, CYP2C9*2/*3,	
		and CYP2C9*3/*3 subjects, respectively, as compared to CYP2C9	
		*1/*1 subjects. As the apparent clearance estimated for CYP2C9 *1*2	

ref. 5, continu-	subjects is comparable to that of CYP2C9*1/*1 subjects, similar sipo-	
ation	nimod exposure is expected for both genotypes.	
	Variants other than *2 and *3 may also lead to decreased or loss of	
	CYP2C9 function (e.g., *5, *6, *8, *11) and may have substrate-speci-	
	fic effects. The frequency of certain CYP2C9 variants differs based on	
	ancestry. The *2 and *3 variants are more prevalent in patients of	
	European or Asian ancestry, while *5, *6, *8, and *11 are more preva-	
	lent in individuals of African ancestry.	

*1/*3, *2/*3 and IM with CYP2C9 inhibitors; *1/*3, *2/*3, *3/*3, IM and PM with gene variant leading to reduced CYP3A4 activity; *1/*3, *2/*3, *3/*3, IM and PM with CYP3A4 inhibitors;
*1/*3, *2/*3 and IM with CYP3A4 inducers (risk for decreased effectiveness)

Comments:

Date of literature search: 16 October 2023.

	Genotype	Code	Gene-drug interaction	Action	Date
KNMP Pharmacogenetics	*1/*2	3 AA	Yes	No	6 November 2023
Working Group decision	*1/*3	3 AA	Yes	Yes	
	*2/*2		Yes	No	
	*2/*3	3 AA	Yes	Yes	
	*3/*3	3 AA	Yes	Yes	
	IM		Yes	Yes	
	PM		Yes	Yes	

Mechanism:

Siponimod is primarily metabolised by CYP2C9 (79% *in vitro*), and to a lesser extent by CYP3A4 (19% *in vitro*), to hydroxysiponimod. This metabolite is then glucuronidated. Both metabolites have a very limited pharmacological activity (hydroxysiponimod 470-fold less and siponimodglucuronide 10,000-fold less than siponimod).

Clinical Implication Score:

Table 1: Definitions of the available Clinical Implication Scores

Potentially	PGx testing for this gene-drug pair is potentially beneficial. Genotyping can be	0-2 +
beneficial	considered on an individual patient basis. If, however, the genotype is available, the DPWG recommends adhering to the gene-drug guideline	
Beneficial	PGx testing for this gene-drug pair is beneficial. It is advised to genotype the patient before (or directly after) drug therapy has been initiated to guide drug and dose selection	3-5 +
Essential	PGx testing for this gene-drug pair is essential for drug safety or efficacy. Genotyping must be performed before drug therapy has been initiated to guide drug and dose selection	6-10 +

Table 2: Criteria on which the attribution of Clinical Implication Score is based

Clinical Implication Score Criteria	Possible	Given
	Score	Score
Clinical effect associated with gene-drug interaction (drug- or diminished efficacy-		
induced)	+	
CTCAE Grade 3 or 4 (clinical effect score D or E)	++	
CTCAE Grade 5 (clinical effect score F)		
Level of evidence supporting the associated clinical effect grade ≥ 3		
 One study with level of evidence score ≥ 3 	+	
 Two studies with level of evidence score ≥ 3 	++	
 Three or more studies with level of evidence score ≥ 3 	+++	

Number needed to genotype (NNG) in the Dutch population to prevent one clinical effect	1			
grade ≥ 3				
• 100 < NNG ≤ 1000	+			
• 10 < NNG ≤ 100	++			
• NNG ≤ 10	+++			
PGx information in the Summary of Product Characteristics (SmPC)				
At least one genotype/phenotype mentioned	+			
OR				
Recommendation to genotype	++	++		
OR				
• At least one genotype/phenotype mentioned as a contra-indication in the corresponding	++			
section				
Total Score:	10+	2+		
Corresponding Clinical Implication Score:		Potentially		
		beneficial		
Score according to the SmPC:				